# cython: infer_types=True, cdivision=True, boundscheck=False cimport cython.parallel cimport numpy as np from itertools import islice from cpython.ref cimport PyObject, Py_XDECREF from cpython.exc cimport PyErr_CheckSignals, PyErr_SetFromErrno from libc.math cimport exp from libcpp.vector cimport vector from libc.string cimport memset, memcpy from libc.stdlib cimport calloc, free from cymem.cymem cimport Pool from thinc.backends.linalg cimport Vec, VecVec from thinc.api import chain, clone, Linear, list2array, NumpyOps, CupyOps, use_ops from thinc.api import get_array_module, zero_init, set_dropout_rate from itertools import islice import srsly import numpy.random import numpy import warnings from ..tokens.doc cimport Doc from ..typedefs cimport weight_t, class_t, hash_t from ._parser_model cimport alloc_activations, free_activations from ._parser_model cimport predict_states, arg_max_if_valid from ._parser_model cimport WeightsC, ActivationsC, SizesC, cpu_log_loss from ._parser_model cimport get_c_weights, get_c_sizes from .stateclass cimport StateClass from ._state cimport StateC from .transition_system cimport Transition from ..gold.example cimport Example from ..util import link_vectors_to_models, create_default_optimizer, registry from ..compat import copy_array from ..errors import Errors, Warnings from .. import util from . import nonproj cdef class Parser: """ Base class of the DependencyParser and EntityRecognizer. """ name = 'base_parser' def __init__(self, Vocab vocab, model, **cfg): """Create a Parser. vocab (Vocab): The vocabulary object. Must be shared with documents to be processed. The value is set to the `.vocab` attribute. **cfg: Configuration parameters. Set to the `.cfg` attribute. If it doesn't include a value for 'moves', a new instance is created with `self.TransitionSystem()`. This defines how the parse-state is created, updated and evaluated. """ self.vocab = vocab moves = cfg.get("moves", None) if moves is None: # defined by EntityRecognizer as a BiluoPushDown moves = self.TransitionSystem(self.vocab.strings) self.moves = moves self.model = model if self.moves.n_moves != 0: self.set_output(self.moves.n_moves) self.cfg = dict(cfg) self.cfg.setdefault("update_with_oracle_cut_size", 100) self.cfg.setdefault("normalize_gradients_with_batch_size", True) self._multitasks = [] for multitask in cfg.get("multitasks", []): self.add_multitask_objective(multitask) self._rehearsal_model = None @classmethod def from_nlp(cls, nlp, model, **cfg): return cls(nlp.vocab, model, **cfg) def __reduce__(self): return (Parser, (self.vocab, self.model), (self.moves, self.cfg)) def __getstate__(self): return (self.moves, self.cfg) def __setstate__(self, state): moves, config = state self.moves = moves self.cfg = config @property def move_names(self): names = [] for i in range(self.moves.n_moves): name = self.moves.move_name(self.moves.c[i].move, self.moves.c[i].label) # Explicitly removing the internal "U-" token used for blocking entities if name != "U-": names.append(name) return names @property def labels(self): class_names = [self.moves.get_class_name(i) for i in range(self.moves.n_moves)] return class_names @property def tok2vec(self): '''Return the embedding and convolutional layer of the model.''' return self.model.get_ref("tok2vec") @property def postprocesses(self): # Available for subclasses, e.g. to deprojectivize return [] def add_label(self, label): resized = False for action in self.moves.action_types: added = self.moves.add_action(action, label) if added: resized = True if resized: self._resize() def _resize(self): self.model.attrs["resize_output"](self.model, self.moves.n_moves) if self._rehearsal_model not in (True, False, None): self._rehearsal_model.attrs["resize_output"]( self._rehearsal_model, self.moves.n_moves ) def add_multitask_objective(self, target): # Defined in subclasses, to avoid circular import raise NotImplementedError def init_multitask_objectives(self, get_examples, pipeline, **cfg): '''Setup models for secondary objectives, to benefit from multi-task learning. This method is intended to be overridden by subclasses. For instance, the dependency parser can benefit from sharing an input representation with a label prediction model. These auxiliary models are discarded after training. ''' pass def use_params(self, params): # Can't decorate cdef class :(. Workaround. with self.model.use_params(params): yield def __call__(self, Doc doc): """Apply the parser or entity recognizer, setting the annotations onto the `Doc` object. doc (Doc): The document to be processed. """ states = self.predict([doc]) self.set_annotations([doc], states, tensors=None) return doc def pipe(self, docs, int batch_size=256, int n_threads=-1): """Process a stream of documents. stream: The sequence of documents to process. batch_size (int): Number of documents to accumulate into a working set. YIELDS (Doc): Documents, in order. """ cdef Doc doc for batch in util.minibatch(docs, size=batch_size): batch_in_order = list(batch) by_length = sorted(batch, key=lambda doc: len(doc)) for subbatch in util.minibatch(by_length, size=max(batch_size//4, 2)): subbatch = list(subbatch) parse_states = self.predict(subbatch) self.set_annotations(subbatch, parse_states, tensors=None) yield from batch_in_order def predict(self, docs): if isinstance(docs, Doc): docs = [docs] if not any(len(doc) for doc in docs): result = self.moves.init_batch(docs) self._resize() return result return self.greedy_parse(docs, drop=0.0) def greedy_parse(self, docs, drop=0.): cdef vector[StateC*] states cdef StateClass state set_dropout_rate(self.model, drop) batch = self.moves.init_batch(docs) # This is pretty dirty, but the NER can resize itself in init_batch, # if labels are missing. We therefore have to check whether we need to # expand our model output. self._resize() model = self.model.predict(docs) weights = get_c_weights(model) for state in batch: if not state.is_final(): states.push_back(state.c) sizes = get_c_sizes(model, states.size()) with nogil: self._parseC(&states[0], weights, sizes) return batch cdef void _parseC(self, StateC** states, WeightsC weights, SizesC sizes) nogil: cdef int i, j cdef vector[StateC*] unfinished cdef ActivationsC activations = alloc_activations(sizes) while sizes.states >= 1: predict_states(&activations, states, &weights, sizes) # Validate actions, argmax, take action. self.c_transition_batch(states, activations.scores, sizes.classes, sizes.states) for i in range(sizes.states): if not states[i].is_final(): unfinished.push_back(states[i]) for i in range(unfinished.size()): states[i] = unfinished[i] sizes.states = unfinished.size() unfinished.clear() free_activations(&activations) def set_annotations(self, docs, states, tensors=None): cdef StateClass state cdef Doc doc for i, (state, doc) in enumerate(zip(states, docs)): self.moves.finalize_state(state.c) for j in range(doc.length): doc.c[j] = state.c._sent[j] self.moves.finalize_doc(doc) for hook in self.postprocesses: hook(doc) def transition_states(self, states, float[:, ::1] scores): cdef StateClass state cdef float* c_scores = &scores[0, 0] cdef vector[StateC*] c_states for state in states: c_states.push_back(state.c) self.c_transition_batch(&c_states[0], c_scores, scores.shape[1], scores.shape[0]) return [state for state in states if not state.c.is_final()] cdef void c_transition_batch(self, StateC** states, const float* scores, int nr_class, int batch_size) nogil: # n_moves should not be zero at this point, but make sure to avoid zero-length mem alloc with gil: assert self.moves.n_moves > 0 is_valid = calloc(self.moves.n_moves, sizeof(int)) cdef int i, guess cdef Transition action for i in range(batch_size): self.moves.set_valid(is_valid, states[i]) guess = arg_max_if_valid(&scores[i*nr_class], is_valid, nr_class) if guess == -1: # This shouldn't happen, but it's hard to raise an error here, # and we don't want to infinite loop. So, force to end state. states[i].force_final() else: action = self.moves.c[guess] action.do(states[i], action.label) states[i].push_hist(guess) free(is_valid) def update(self, examples, drop=0., set_annotations=False, sgd=None, losses=None): if losses is None: losses = {} losses.setdefault(self.name, 0.) for multitask in self._multitasks: multitask.update(examples, drop=drop, sgd=sgd) set_dropout_rate(self.model, drop) # Prepare the stepwise model, and get the callback for finishing the batch model, backprop_tok2vec = self.model.begin_update( [eg.predicted for eg in examples]) if self.cfg["update_with_oracle_cut_size"] >= 1: # Chop sequences into lengths of this many transitions, to make the # batch uniform length. We randomize this to overfit less. cut_size = self.cfg["update_with_oracle_cut_size"] states, golds, max_steps = self._init_gold_batch( examples, max_length=numpy.random.choice(range(20, cut_size)) ) else: states, golds, max_steps = self.moves.init_gold_batch(examples) all_states = list(states) states_golds = zip(states, golds) for _ in range(max_steps): if not states_golds: break states, golds = zip(*states_golds) scores, backprop = model.begin_update(states) d_scores = self.get_batch_loss(states, golds, scores, losses) backprop(d_scores) # Follow the predicted action self.transition_states(states, scores) states_golds = [(s, g) for (s, g) in zip(states, golds) if not s.is_final()] backprop_tok2vec(golds) if sgd not in (None, False): self.model.finish_update(sgd) if set_annotations: docs = [eg.predicted for eg in examples] self.set_annotations(docs, all_states) return losses def rehearse(self, examples, sgd=None, losses=None, **cfg): """Perform a "rehearsal" update, to prevent catastrophic forgetting.""" if losses is None: losses = {} for multitask in self._multitasks: if hasattr(multitask, 'rehearse'): multitask.rehearse(examples, losses=losses, sgd=sgd) if self._rehearsal_model is None: return None losses.setdefault(self.name, 0.) docs = [eg.predicted for eg in examples] states = self.moves.init_batch(docs) # This is pretty dirty, but the NER can resize itself in init_batch, # if labels are missing. We therefore have to check whether we need to # expand our model output. self._resize() # Prepare the stepwise model, and get the callback for finishing the batch set_dropout_rate(self._rehearsal_model, 0.0) set_dropout_rate(self.model, 0.0) tutor, _ = self._rehearsal_model.begin_update(docs) model, finish_update = self.model.begin_update(docs) n_scores = 0. loss = 0. while states: targets, _ = tutor.begin_update(states) guesses, backprop = model.begin_update(states) d_scores = (guesses - targets) / targets.shape[0] # If all weights for an output are 0 in the original model, don't # supervise that output. This allows us to add classes. loss += (d_scores**2).sum() backprop(d_scores, sgd=sgd) # Follow the predicted action self.transition_states(states, guesses) states = [state for state in states if not state.is_final()] n_scores += d_scores.size # Do the backprop finish_update(docs) if sgd is not None: self.model.finish_update(sgd) losses[self.name] += loss / n_scores return losses def get_gradients(self): """Get non-zero gradients of the model's parameters, as a dictionary keyed by the parameter ID. The values are (weights, gradients) tuples. """ gradients = {} queue = [self.model] seen = set() for node in queue: if node.id in seen: continue seen.add(node.id) if hasattr(node, "_mem") and node._mem.gradient.any(): gradients[node.id] = [node._mem.weights, node._mem.gradient] if hasattr(node, "_layers"): queue.extend(node._layers) return gradients def get_batch_loss(self, states, golds, float[:, ::1] scores, losses): cdef StateClass state cdef Pool mem = Pool() cdef int i # n_moves should not be zero at this point, but make sure to avoid zero-length mem alloc assert self.moves.n_moves > 0 is_valid = mem.alloc(self.moves.n_moves, sizeof(int)) costs = mem.alloc(self.moves.n_moves, sizeof(float)) cdef np.ndarray d_scores = numpy.zeros((len(states), self.moves.n_moves), dtype='f', order='C') c_d_scores = d_scores.data unseen_classes = self.model.attrs["unseen_classes"] for i, (state, gold) in enumerate(zip(states, golds)): memset(is_valid, 0, self.moves.n_moves * sizeof(int)) memset(costs, 0, self.moves.n_moves * sizeof(float)) self.moves.set_costs(is_valid, costs, state, gold) for j in range(self.moves.n_moves): if costs[j] <= 0.0 and j in unseen_classes: unseen_classes.remove(j) cpu_log_loss(c_d_scores, costs, is_valid, &scores[i, 0], d_scores.shape[1]) c_d_scores += d_scores.shape[1] if len(states) and self.cfg["normalize_gradients_with_batch_size"]: d_scores /= len(states) if losses is not None: losses.setdefault(self.name, 0.) losses[self.name] += (d_scores**2).sum() return d_scores def create_optimizer(self): return create_default_optimizer() def set_output(self, nO): self.model.attrs["resize_output"](self.model, nO) def begin_training(self, get_examples, pipeline=None, sgd=None, **kwargs): self.cfg.update(kwargs) if len(self.vocab.lookups.get_table("lexeme_norm", {})) == 0: warnings.warn(Warnings.W033.format(model="parser or NER")) if not hasattr(get_examples, '__call__'): gold_tuples = get_examples get_examples = lambda: gold_tuples actions = self.moves.get_actions( examples=get_examples(), min_freq=self.cfg['min_action_freq'], learn_tokens=self.cfg["learn_tokens"] ) for action, labels in self.moves.labels.items(): actions.setdefault(action, {}) for label, freq in labels.items(): if label not in actions[action]: actions[action][label] = freq self.moves.initialize_actions(actions) # make sure we resize so we have an appropriate upper layer self._resize() if sgd is None: sgd = self.create_optimizer() doc_sample = [] for example in islice(get_examples(), 10): doc_sample.append(example.predicted) if pipeline is not None: for name, component in pipeline: if component is self: break if hasattr(component, "pipe"): doc_sample = list(component.pipe(doc_sample)) else: doc_sample = [component(doc) for doc in doc_sample] if doc_sample: self.model.initialize(doc_sample) else: self.model.initialize() if pipeline is not None: self.init_multitask_objectives(get_examples, pipeline, sgd=sgd, **self.cfg) link_vectors_to_models(self.vocab) return sgd def to_disk(self, path, exclude=tuple(), **kwargs): serializers = { 'model': lambda p: (self.model.to_disk(p) if self.model is not True else True), 'vocab': lambda p: self.vocab.to_disk(p), 'moves': lambda p: self.moves.to_disk(p, exclude=["strings"]), 'cfg': lambda p: srsly.write_json(p, self.cfg) } exclude = util.get_serialization_exclude(serializers, exclude, kwargs) util.to_disk(path, serializers, exclude) def from_disk(self, path, exclude=tuple(), **kwargs): deserializers = { 'vocab': lambda p: self.vocab.from_disk(p), 'moves': lambda p: self.moves.from_disk(p, exclude=["strings"]), 'cfg': lambda p: self.cfg.update(srsly.read_json(p)), 'model': lambda p: None, } exclude = util.get_serialization_exclude(deserializers, exclude, kwargs) util.from_disk(path, deserializers, exclude) if 'model' not in exclude: path = util.ensure_path(path) with (path / 'model').open('rb') as file_: bytes_data = file_.read() try: self._resize() self.model.from_bytes(bytes_data) except AttributeError: raise ValueError(Errors.E149) return self def to_bytes(self, exclude=tuple(), **kwargs): serializers = { "model": lambda: (self.model.to_bytes()), "vocab": lambda: self.vocab.to_bytes(), "moves": lambda: self.moves.to_bytes(exclude=["strings"]), "cfg": lambda: srsly.json_dumps(self.cfg, indent=2, sort_keys=True) } exclude = util.get_serialization_exclude(serializers, exclude, kwargs) return util.to_bytes(serializers, exclude) def from_bytes(self, bytes_data, exclude=tuple(), **kwargs): deserializers = { "vocab": lambda b: self.vocab.from_bytes(b), "moves": lambda b: self.moves.from_bytes(b, exclude=["strings"]), "cfg": lambda b: self.cfg.update(srsly.json_loads(b)), "model": lambda b: None, } exclude = util.get_serialization_exclude(deserializers, exclude, kwargs) msg = util.from_bytes(bytes_data, deserializers, exclude) if 'model' not in exclude: if 'model' in msg: try: self.model.from_bytes(msg['model']) except AttributeError: raise ValueError(Errors.E149) return self def _init_gold_batch(self, examples, min_length=5, max_length=500): """Make a square batch, of length equal to the shortest doc. A long doc will get multiple states. Let's say we have a doc of length 2*N, where N is the shortest doc. We'll make two states, one representing long_doc[:N], and another representing long_doc[N:].""" cdef: StateClass state Transition action all_states = self.moves.init_batch([eg.predicted for eg in examples]) kept = [] for state, eg in zip(all_states, examples): if self.moves.has_gold(eg) and not state.is_final(): gold = self.moves.init_gold(state, eg) kept.append((eg, state, gold)) max_length = max(min_length, min(max_length, min([len(eg.x) for eg in examples]))) max_moves = 0 states = [] golds = [] for eg, state, gold in kept: oracle_actions = self.moves.get_oracle_sequence_from_state( state, gold) start = 0 while start < len(eg.predicted): state = state.copy() n_moves = 0 while state.B(0) < start and not state.is_final(): action = self.moves.c[oracle_actions.pop(0)] action.do(state.c, action.label) state.c.push_hist(action.clas) n_moves += 1 has_gold = self.moves.has_gold(eg, start=start, end=start+max_length) if not state.is_final() and has_gold: states.append(state) golds.append(gold) max_moves = max(max_moves, n_moves) start += min(max_length, len(eg.x)-start) max_moves = max(max_moves, len(oracle_actions)) return states, golds, max_moves