from typing import Dict, Any, Tuple, Callable, List from ..util import registry from .. import util from ..errors import Errors from wasabi import msg @registry.loggers("spacy.ConsoleLogger.v1") def console_logger(): def setup_printer( nlp: "Language", ) -> Tuple[Callable[[Dict[str, Any]], None], Callable]: # we assume here that only components are enabled that should be trained & logged logged_pipes = nlp.pipe_names score_weights = nlp.config["training"]["score_weights"] score_cols = [col for col, value in score_weights.items() if value is not None] score_widths = [max(len(col), 6) for col in score_cols] loss_cols = [f"Loss {pipe}" for pipe in logged_pipes] loss_widths = [max(len(col), 8) for col in loss_cols] table_header = ["E", "#"] + loss_cols + score_cols + ["Score"] table_header = [col.upper() for col in table_header] table_widths = [3, 6] + loss_widths + score_widths + [6] table_aligns = ["r" for _ in table_widths] msg.row(table_header, widths=table_widths) msg.row(["-" * width for width in table_widths]) def log_step(info: Dict[str, Any]): try: losses = [ "{0:.2f}".format(float(info["losses"][pipe_name])) for pipe_name in logged_pipes ] except KeyError as e: raise KeyError( Errors.E983.format( dict="scores (losses)", key=str(e), keys=list(info["losses"].keys()), ) ) from None scores = [] for col in score_cols: score = info["other_scores"].get(col, 0.0) try: score = float(score) if col != "speed": score *= 100 scores.append("{0:.2f}".format(score)) except TypeError: err = Errors.E916.format(name=col, score_type=type(score)) raise TypeError(err) from None data = ( [info["epoch"], info["step"]] + losses + scores + ["{0:.2f}".format(float(info["score"]))] ) msg.row(data, widths=table_widths, aligns=table_aligns) def finalize(): pass return log_step, finalize return setup_printer @registry.loggers("spacy.WandbLogger.v1") def wandb_logger(project_name: str, remove_config_values: List[str] = []): import wandb console = console_logger() def setup_logger( nlp: "Language", ) -> Tuple[Callable[[Dict[str, Any]], None], Callable]: config = nlp.config.interpolate() config_dot = util.dict_to_dot(config) for field in remove_config_values: del config_dot[field] config = util.dot_to_dict(config_dot) wandb.init(project=project_name, config=config, reinit=True) console_log_step, console_finalize = console(nlp) def log_step(info: Dict[str, Any]): console_log_step(info) score = info["score"] other_scores = info["other_scores"] losses = info["losses"] wandb.log({"score": score}) if losses: wandb.log({f"loss_{k}": v for k, v in losses.items()}) if isinstance(other_scores, dict): wandb.log(other_scores) def finalize(): console_finalize() wandb.join() return log_step, finalize return setup_logger