--- title: Tokenizer teaser: Segment text into words, punctuations marks etc. tag: class source: spacy/tokenizer.pyx --- Segment text, and create `Doc` objects with the discovered segment boundaries. ## Tokenizer.\_\_init\_\_ {#init tag="method"} Create a `Tokenizer`, to create `Doc` objects given unicode text. > #### Example > > ```python > # Construction 1 > from spacy.tokenizer import Tokenizer > tokenizer = Tokenizer(nlp.vocab) > > # Construction 2 > from spacy.lang.en import English > tokenizer = English().Defaults.create_tokenizer(nlp) > ``` | Name | Type | Description | | ---------------- | ----------- | ----------------------------------------------------------------------------------- | | `vocab` | `Vocab` | A storage container for lexical types. | | `rules` | dict | Exceptions and special-cases for the tokenizer. | | `prefix_search` | callable | A function matching the signature of `re.compile(string).search` to match prefixes. | | `suffix_search` | callable | A function matching the signature of `re.compile(string).search` to match suffixes. | | `infix_finditer` | callable | A function matching the signature of `re.compile(string).finditer` to find infixes. | | `token_match` | callable | A boolean function matching strings to be recognized as tokens. | | **RETURNS** | `Tokenizer` | The newly constructed object. | ## Tokenizer.\_\_call\_\_ {#call tag="method"} Tokenize a string. > #### Example > > ```python > tokens = tokenizer(u"This is a sentence") > assert len(tokens) == 4 > ``` | Name | Type | Description | | ----------- | ------- | --------------------------------------- | | `string` | unicode | The string to tokenize. | | **RETURNS** | `Doc` | A container for linguistic annotations. | ## Tokenizer.pipe {#pipe tag="method"} Tokenize a stream of texts. > #### Example > > ```python > texts = [u"One document.", u"...", u"Lots of documents"] > for doc in tokenizer.pipe(texts, batch_size=50): > pass > ``` | Name | Type | Description | | ------------ | ----- | ----------------------------------------------------------------------------------------------------------------------- | | `texts` | - | A sequence of unicode texts. | | `batch_size` | int | The number of texts to accumulate in an internal buffer. | | `n_threads` | int | The number of threads to use, if the implementation supports multi-threading. The default tokenizer is single-threaded. | | **YIELDS** | `Doc` | A sequence of Doc objects, in order. | ## Tokenizer.find_infix {#find_infix tag="method"} Find internal split points of the string. | Name | Type | Description | | ----------- | ------- | -------------------------------------------------------------------------------------------------------------------------------------------------- | | `string` | unicode | The string to split. | | **RETURNS** | list | A list of `re.MatchObject` objects that have `.start()` and `.end()` methods, denoting the placement of internal segment separators, e.g. hyphens. | ## Tokenizer.find_prefix {#find_prefix tag="method"} Find the length of a prefix that should be segmented from the string, or `None` if no prefix rules match. | Name | Type | Description | | ----------- | ------- | ------------------------------------------------------ | | `string` | unicode | The string to segment. | | **RETURNS** | int | The length of the prefix if present, otherwise `None`. | ## Tokenizer.find_suffix {#find_suffix tag="method"} Find the length of a suffix that should be segmented from the string, or `None` if no suffix rules match. | Name | Type | Description | | ----------- | ------------ | ------------------------------------------------------ | | `string` | unicode | The string to segment. | | **RETURNS** | int / `None` | The length of the suffix if present, otherwise `None`. | ## Tokenizer.add_special_case {#add_special_case tag="method"} Add a special-case tokenization rule. This mechanism is also used to add custom tokenizer exceptions to the language data. See the usage guide on [adding languages](/usage/adding-languages#tokenizer-exceptions) for more details and examples. > #### Example > > ```python > from spacy.attrs import ORTH, LEMMA > case = [{"don't": [{ORTH: "do"}, {ORTH: "n't", LEMMA: "not"}]}] > tokenizer.add_special_case(case) > ``` | Name | Type | Description | | ------------- | -------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------ | | `string` | unicode | The string to specially tokenize. | | `token_attrs` | iterable | A sequence of dicts, where each dict describes a token and its attributes. The `ORTH` fields of the attributes must exactly match the string when they are concatenated. | ## Attributes {#attributes} | Name | Type | Description | | ---------------- | ------- | -------------------------------------------------------------------------------------------------------------------------- | | `vocab` | `Vocab` | The vocab object of the parent `Doc`. | | `prefix_search` | - | A function to find segment boundaries from the start of a string. Returns the length of the segment, or `None`. | | `suffix_search` | - | A function to find segment boundaries from the end of a string. Returns the length of the segment, or `None`. | | `infix_finditer` | - | A function to find internal segment separators, e.g. hyphens. Returns a (possibly empty) list of `re.MatchObject` objects. |