# cython: profile=True """ MALT-style dependency parser """ from __future__ import unicode_literals cimport cython from libc.stdint cimport uint32_t, uint64_t import random import os.path from os import path import shutil import json from cymem.cymem cimport Pool, Address from murmurhash.mrmr cimport hash64 from thinc.typedefs cimport weight_t, class_t, feat_t, atom_t from util import Config from thinc.features cimport Extractor from thinc.features cimport Feature from thinc.features cimport count_feats from thinc.learner cimport LinearModel from ..tokens cimport Tokens, TokenC from .arc_eager cimport TransitionSystem, Transition from ._state cimport init_state, State, is_final, get_idx, get_s0, get_s1, get_n0, get_n1 from . import _parse_features from ._parse_features cimport fill_context, CONTEXT_SIZE DEBUG = False def set_debug(val): global DEBUG DEBUG = val cdef unicode print_state(State* s, list words): words = list(words) + ['EOL'] top = words[s.stack[0]] second = words[s.stack[-1]] n0 = words[s.i] n1 = words[s.i + 1] return ' '.join((second, top, '|', n0, n1)) def get_templates(name): pf = _parse_features if name == 'zhang': return pf.unigrams, pf.arc_eager else: return pf.hasty, (pf.unigrams + pf.s0_n0 + pf.s1_n0 + pf.s0_n1 + pf.n0_n1 + \ pf.tree_shape + pf.trigrams) cdef class GreedyParser: def __init__(self, model_dir): assert os.path.exists(model_dir) and os.path.isdir(model_dir) self.cfg = Config.read(model_dir, 'config') self.moves = TransitionSystem(self.cfg.left_labels, self.cfg.right_labels) hasty_templ, full_templ = get_templates(self.cfg.features) self.model = Model(self.moves.n_moves, full_templ, model_dir) cpdef int parse(self, Tokens tokens) except -1: cdef: Transition guess uint64_t state_key cdef atom_t[CONTEXT_SIZE] context cdef int n_feats cdef Pool mem = Pool() cdef State* state = init_state(mem, tokens.data, tokens.length) while not is_final(state): fill_context(context, state) scores = self.model.score(context) guess = self.moves.best_valid(scores, state) self.moves.transition(state, &guess) return 0 def train_sent(self, Tokens tokens, list gold_heads, list gold_labels): cdef: const Feature* feats const weight_t* scores Transition guess Transition gold cdef int n_feats cdef atom_t[CONTEXT_SIZE] context cdef Pool mem = Pool() cdef int* heads_array = mem.alloc(tokens.length, sizeof(int)) cdef int* labels_array = mem.alloc(tokens.length, sizeof(int)) cdef int i for i in range(tokens.length): heads_array[i] = gold_heads[i] labels_array[i] = self.moves.label_ids[gold_labels[i]] cdef State* state = init_state(mem, tokens.data, tokens.length) while not is_final(state): fill_context(context, state) scores = self.model.score(context) guess = self.moves.best_valid(scores, state) best = self.moves.best_gold(&guess, scores, state, heads_array, labels_array) self.model.update(context, guess.clas, best.clas, guess.cost) self.moves.transition(state, &guess) cdef int n_corr = 0 for i in range(tokens.length): n_corr += (i + state.sent[i].head) == gold_heads[i] return n_corr