# coding: utf-8 from random import shuffle import numpy as np from spacy._ml import zero_init, create_default_optimizer from spacy.cli.pretrain import get_cossim_loss from thinc.v2v import Model from thinc.api import chain from thinc.neural._classes.affine import Affine class EntityEncoder: """ Train the embeddings of entity descriptions to fit a fixed-size entity vector (e.g. 64D). This entity vector will be stored in the KB, and context vectors will be trained to be similar to them. """ DROP = 0 EPOCHS = 5 STOP_THRESHOLD = 0.04 BATCH_SIZE = 1000 def __init__(self, nlp, input_dim, desc_width): self.nlp = nlp self.input_dim = input_dim self.desc_width = desc_width def apply_encoder(self, description_list): if self.encoder is None: raise ValueError("Can not apply encoder before training it") print("Encoding", len(description_list), "entities") batch_size = 100000 start = 0 stop = min(batch_size, len(description_list)) encodings = [] while start < len(description_list): docs = list(self.nlp.pipe(description_list[start:stop])) doc_embeddings = [self._get_doc_embedding(doc) for doc in docs] enc = self.encoder(np.asarray(doc_embeddings)) encodings.extend(enc.tolist()) start = start + batch_size stop = min(stop + batch_size, len(description_list)) print("encoded :", len(encodings)) return encodings def train(self, description_list, to_print=False): processed, loss = self._train_model(description_list) if to_print: print("Trained on", processed, "entities across", self.EPOCHS, "epochs") print("Final loss:", loss) def _train_model(self, description_list): # TODO: when loss gets too low, a 'mean of empty slice' warning is thrown by numpy self._build_network(self.input_dim, self.desc_width) processed = 0 loss = 1 descriptions = description_list.copy() # copy this list so that shuffling does not affect other functions for i in range(self.EPOCHS): shuffle(descriptions) batch_nr = 0 start = 0 stop = min(self.BATCH_SIZE, len(descriptions)) while loss > self.STOP_THRESHOLD and start < len(descriptions): batch = [] for descr in descriptions[start:stop]: doc = self.nlp(descr) doc_vector = self._get_doc_embedding(doc) batch.append(doc_vector) loss = self._update(batch) print(i, batch_nr, loss) processed += len(batch) batch_nr += 1 start = start + self.BATCH_SIZE stop = min(stop + self.BATCH_SIZE, len(descriptions)) return processed, loss @staticmethod def _get_doc_embedding(doc): indices = np.zeros((len(doc),), dtype="i") for i, word in enumerate(doc): if word.orth in doc.vocab.vectors.key2row: indices[i] = doc.vocab.vectors.key2row[word.orth] else: indices[i] = 0 word_vectors = doc.vocab.vectors.data[indices] doc_vector = np.mean(word_vectors, axis=0) # TODO: min? max? return doc_vector def _build_network(self, orig_width, hidden_with): with Model.define_operators({">>": chain}): # very simple encoder-decoder model self.encoder = ( Affine(hidden_with, orig_width) ) self.model = self.encoder >> zero_init(Affine(orig_width, hidden_with, drop_factor=0.0)) self.sgd = create_default_optimizer(self.model.ops) def _update(self, vectors): predictions, bp_model = self.model.begin_update(np.asarray(vectors), drop=self.DROP) loss, d_scores = self._get_loss(scores=predictions, golds=np.asarray(vectors)) bp_model(d_scores, sgd=self.sgd) return loss / len(vectors) @staticmethod def _get_loss(golds, scores): loss, gradients = get_cossim_loss(scores, golds) return loss, gradients