# cython: profile=True """ MALT-style dependency parser """ from __future__ import unicode_literals cimport cython from cpython.ref cimport PyObject, Py_INCREF, Py_XDECREF from libc.stdint cimport uint32_t, uint64_t from libc.string cimport memset, memcpy import random import os.path from os import path import shutil import json import sys from cymem.cymem cimport Pool, Address from murmurhash.mrmr cimport hash64 from thinc.typedefs cimport weight_t, class_t, feat_t, atom_t, hash_t from util import Config from thinc.api cimport Example from ..structs cimport TokenC from ..tokens.doc cimport Doc from ..strings cimport StringStore from .transition_system import OracleError from .transition_system cimport TransitionSystem, Transition from ..gold cimport GoldParse from . import _parse_features from ._parse_features cimport CONTEXT_SIZE from ._parse_features cimport fill_context from .stateclass cimport StateClass DEBUG = False def set_debug(val): global DEBUG DEBUG = val def get_templates(name): pf = _parse_features if name == 'ner': return pf.ner elif name == 'debug': return pf.unigrams elif name.startswith('embed'): return (pf.words, pf.tags, pf.labels) else: return (pf.unigrams + pf.s0_n0 + pf.s1_n0 + pf.s1_s0 + pf.s0_n1 + pf.n0_n1 + \ pf.tree_shape + pf.trigrams) def ParserFactory(transition_system): return lambda strings, dir_: Parser(strings, dir_, transition_system) cdef class Parser: def __init__(self, StringStore strings, model_dir, transition_system): if not os.path.exists(model_dir): print >> sys.stderr, "Warning: No model found at", model_dir elif not os.path.isdir(model_dir): print >> sys.stderr, "Warning: model path:", model_dir, "is not a directory" else: self.cfg = Config.read(model_dir, 'config') self.moves = transition_system(strings, self.cfg.labels) templates = get_templates(self.cfg.features) self.model = Model(self.moves.n_moves, templates, model_dir) def __call__(self, Doc tokens): cdef StateClass stcls = StateClass.init(tokens.data, tokens.length) self.moves.initialize_state(stcls) cdef Example eg = Example(self.model.n_classes, CONTEXT_SIZE, self.model.n_feats, self.model.n_feats) while not stcls.is_final(): memset(eg.c.scores, 0, eg.c.nr_class * sizeof(weight_t)) self.moves.set_valid(eg.c.is_valid, stcls) fill_context(eg.c.atoms, stcls) self.model.predict(eg) self.moves.c[eg.c.guess].do(stcls, self.moves.c[eg.c.guess].label) self.moves.finalize_state(stcls) tokens.set_parse(stcls._sent) def train(self, Doc tokens, GoldParse gold): self.moves.preprocess_gold(gold) cdef StateClass stcls = StateClass.init(tokens.data, tokens.length) self.moves.initialize_state(stcls) cdef Example eg = Example(self.model.n_classes, CONTEXT_SIZE, self.model.n_feats, self.model.n_feats) cdef weight_t loss = 0 words = [w.orth_ for w in tokens] cdef Transition G while not stcls.is_final(): memset(eg.c.scores, 0, eg.c.nr_class * sizeof(weight_t)) self.moves.set_costs(eg.c.is_valid, eg.c.costs, stcls, gold) fill_context(eg.c.atoms, stcls) self.model.train(eg) G = self.moves.c[eg.c.guess] self.moves.c[eg.c.guess].do(stcls, self.moves.c[eg.c.guess].label) loss += eg.c.loss return loss