{ "sidebar": { "Overview": { "Architecture": "./", "Annotation Specs": "annotation", "Functions": "top-level" }, "Containers": { "Doc": "doc", "Token": "token", "Span": "span", "Lexeme": "lexeme" }, "Pipeline": { "Language": "language", "Pipe": "pipe", "Tensorizer": "tensorizer", "Tagger": "tagger", "DependencyParser": "dependencyparser", "EntityRecognizer": "entityrecognizer", "TextCategorizer": "textcategorizer", "Tokenizer": "tokenizer", "Lemmatizer": "lemmatizer", "Matcher": "matcher", "PhraseMatcher": "phrasematcher" }, "Other": { "Vocab": "vocab", "StringStore": "stringstore", "Vectors": "vectors", "GoldParse": "goldparse", "GoldCorpus": "goldcorpus" } }, "index": { "title": "Architecture", "next": "annotation", "menu": { "Basics": "basics", "Neural Network Model": "nn-model", "Cython Conventions": "cython" } }, "top-level": { "title": "Top-level Functions", "menu": { "spacy": "spacy", "displacy": "displacy", "Utility Functions": "util", "Compatibility": "compat", "Command Line": "cli" } }, "language": { "title": "Language", "tag": "class", "teaser": "A text-processing pipeline.", "source": "spacy/language.py" }, "doc": { "title": "Doc", "tag": "class", "teaser": "A container for accessing linguistic annotations.", "source": "spacy/tokens/doc.pyx" }, "token": { "title": "Token", "tag": "class", "source": "spacy/tokens/token.pyx" }, "span": { "title": "Span", "tag": "class", "source": "spacy/tokens/span.pyx" }, "lexeme": { "title": "Lexeme", "tag": "class", "source": "spacy/lexeme.pyx" }, "vocab": { "title": "Vocab", "teaser": "A storage class for vocabulary and other data shared across a language.", "tag": "class", "source": "spacy/vocab.pyx" }, "stringstore": { "title": "StringStore", "tag": "class", "source": "spacy/strings.pyx" }, "matcher": { "title": "Matcher", "teaser": "Match sequences of tokens, based on pattern rules.", "tag": "class", "source": "spacy/matcher.pyx" }, "phrasematcher": { "title": "PhraseMatcher", "teaser": "Match sequences of tokens, based on documents.", "tag": "class", "tag_new": 2, "source": "spacy/matcher.pyx" }, "pipe": { "title": "Pipe", "teaser": "Abstract base class defining the API for pipeline components.", "tag": "class", "tag_new": 2, "source": "spacy/pipeline.pyx" }, "dependenyparser": { "title": "DependencyParser", "tag": "class", "source": "spacy/pipeline.pyx" }, "entityrecognizer": { "title": "EntityRecognizer", "teaser": "Annotate named entities on documents.", "tag": "class", "source": "spacy/pipeline.pyx" }, "textcategorizer": { "title": "TextCategorizer", "teaser": "Add text categorization models to spaCy pipelines.", "tag": "class", "tag_new": 2, "source": "spacy/pipeline.pyx" }, "dependencyparser": { "title": "DependencyParser", "teaser": "Annotate syntactic dependencies on documents.", "tag": "class", "source": "spacy/pipeline.pyx" }, "tokenizer": { "title": "Tokenizer", "tag": "class", "source": "spacy/tokenizer.pyx" }, "lemmatizer": { "title": "Lemmatizer", "teaser": "Assign the base forms of words.", "tag": "class", "source": "spacy/lemmatizer.py" }, "tagger": { "title": "Tagger", "teaser": "Annotate part-of-speech tags on documents.", "tag": "class", "source": "spacy/pipeline.pyx" }, "tensorizer": { "title": "Tensorizer", "teaser": "Add a tensor with position-sensitive meaning representations to a document.", "tag": "class", "tag_new": 2, "source": "spacy/pipeline.pyx" }, "goldparse": { "title": "GoldParse", "tag": "class", "source": "spacy/gold.pyx" }, "goldcorpus": { "title": "GoldCorpus", "teaser": "An annotated corpus, using the JSON file format.", "tag": "class", "tag_new": 2, "source": "spacy/gold.pyx" }, "vectors": { "title": "Vectors", "teaser": "Store, save and load word vectors.", "tag": "class", "tag_new": 2, "source": "spacy/vectors.pyx" }, "annotation": { "title": "Annotation Specifications", "teaser": "Schemes used for labels, tags and training data.", "menu": { "Tokenization": "tokenization", "Sentence Boundaries": "sbd", "POS Tagging": "pos-tagging", "Lemmatization": "lemmatization", "Dependencies": "dependency-parsing", "Named Entities": "named-entities", "Training Data": "training" } } }