from pathlib import Path from wasabi import msg from thinc.api import require_gpu, fix_random_seed, set_dropout_rate, Adam from ._util import Arg, Opt, debug_cli from .. import util from ..lang.en import English @debug_cli.command("model") def debug_model_cli( # fmt: off config_path: Path = Arg(..., help="Path to config file", exists=True), layers: str = Opt("", "--layers", "-l", help="Comma-separated names of pipeline components to train"), dimensions: bool = Opt(False, "--dimensions", "-DIM", help="Show dimensions"), parameters: bool = Opt(False, "--parameters", "-PAR", help="Show parameters"), gradients: bool = Opt(False, "--gradients", "-GRAD", help="Show gradients"), attributes: bool = Opt(False, "--attributes", "-ATTR", help="Show attributes"), P0: bool = Opt(False, "--print-step0", "-P0", help="Print model before training"), P1: bool = Opt(False, "--print-step1", "-P1", help="Print model after initialization"), P2: bool = Opt(False, "--print-step2", "-P2", help="Print model after training"), P3: bool = Opt(True, "--print-step3", "-P3", help="Print final predictions"), use_gpu: int = Opt(-1, "--use-gpu", "-g", help="Use GPU"), seed: int = Opt(None, "--seed", "-s", help="Use GPU"), # fmt: on ): """ Analyze a Thinc model implementation. Includes checks for internal structure and activations during training. """ print_settings = { "dimensions": dimensions, "parameters": parameters, "gradients": gradients, "attributes": attributes, "layers": [int(x.strip()) for x in layers.split(",")] if layers else [], "print_before_training": P0, "print_after_init": P1, "print_after_training": P2, "print_prediction": P3, } if seed is not None: msg.info(f"Fixing random seed: {seed}") fix_random_seed(seed) if use_gpu >= 0: msg.info(f"Using GPU: {use_gpu}") require_gpu(use_gpu) else: msg.info(f"Using CPU") debug_model( config_path, print_settings=print_settings, ) def debug_model(config_path: Path, *, print_settings=None): if print_settings is None: print_settings = {} model = util.load_config(config_path, create_objects=True)["model"] # STEP 0: Printing before training msg.info(f"Analysing model with ID {model.id}") if print_settings.get("print_before_training"): msg.info(f"Before training:") _print_model(model, print_settings) # STEP 1: Initializing the model and printing again model.initialize(X=_get_docs(), Y=_get_output(model.ops.xp)) if print_settings.get("print_after_init"): msg.info(f"After initialization:") _print_model(model, print_settings) # STEP 2: Updating the model and printing again optimizer = Adam(0.001) set_dropout_rate(model, 0.2) for e in range(3): Y, get_dX = model.begin_update(_get_docs()) dY = get_gradient(model, Y) get_dX(dY) model.finish_update(optimizer) if print_settings.get("print_after_training"): msg.info(f"After training:") _print_model(model, print_settings) # STEP 3: the final prediction prediction = model.predict(_get_docs()) if print_settings.get("print_prediction"): msg.info(f"Prediction:", str(prediction)) def get_gradient(model, Y): goldY = _get_output(model.ops.xp) return Y - goldY def _sentences(): return [ "Apple is looking at buying U.K. startup for $1 billion", "Autonomous cars shift insurance liability toward manufacturers", "San Francisco considers banning sidewalk delivery robots", "London is a big city in the United Kingdom.", ] def _get_docs(): nlp = English() return list(nlp.pipe(_sentences())) def _get_output(xp): return xp.asarray( [ xp.asarray([i + 10, i + 20, i + 30], dtype="float32") for i, _ in enumerate(_get_docs()) ] ) def _print_model(model, print_settings): layers = print_settings.get("layers", "") parameters = print_settings.get("parameters", False) dimensions = print_settings.get("dimensions", False) gradients = print_settings.get("gradients", False) attributes = print_settings.get("attributes", False) for i, node in enumerate(model.walk()): if not layers or i in layers: msg.info(f"Layer {i}: model ID {node.id}: '{node.name}'") if dimensions: for name in node.dim_names: if node.has_dim(name): msg.info(f" - dim {name}: {node.get_dim(name)}") else: msg.info(f" - dim {name}: {node.has_dim(name)}") if parameters: for name in node.param_names: if node.has_param(name): print_value = _print_matrix(node.get_param(name)) msg.info(f" - param {name}: {print_value}") else: msg.info(f" - param {name}: {node.has_param(name)}") if gradients: for name in node.param_names: if node.has_grad(name): print_value = _print_matrix(node.get_grad(name)) msg.info(f" - grad {name}: {print_value}") else: msg.info(f" - grad {name}: {node.has_grad(name)}") if attributes: attrs = node.attrs for name, value in attrs.items(): msg.info(f" - attr {name}: {value}") def _print_matrix(value): if value is None or isinstance(value, bool): return value result = str(value.shape) + " - sample: " sample_matrix = value for d in range(value.ndim - 1): sample_matrix = sample_matrix[0] sample_matrix = sample_matrix[0:5] result = result + str(sample_matrix) return result