#!/usr/bin/env python # coding: utf8 """Example of training spaCy's entity linker, starting off with a predefined knowledge base and corresponding vocab, and a blank English model. For more details, see the documentation: * Training: https://spacy.io/usage/training * Entity Linking: https://spacy.io/usage/linguistic-features#entity-linking Compatible with: spaCy v2.2.4 Last tested with: v2.2.4 """ from __future__ import unicode_literals, print_function import plac import random from pathlib import Path import spacy from spacy.kb import KnowledgeBase from spacy.gold import Example from spacy.pipeline import EntityRuler from spacy.util import minibatch, compounding def sample_train_data(): train_data = [] # Q2146908 (Russ Cochran): American golfer # Q7381115 (Russ Cochran): publisher text_1 = "Russ Cochran his reprints include EC Comics." dict_1 = {(0, 12): {"Q7381115": 1.0, "Q2146908": 0.0}} train_data.append((text_1, {"links": dict_1})) text_2 = "Russ Cochran has been publishing comic art." dict_2 = {(0, 12): {"Q7381115": 1.0, "Q2146908": 0.0}} train_data.append((text_2, {"links": dict_2})) text_3 = "Russ Cochran captured his first major title with his son as caddie." dict_3 = {(0, 12): {"Q7381115": 0.0, "Q2146908": 1.0}} train_data.append((text_3, {"links": dict_3})) text_4 = "Russ Cochran was a member of University of Kentucky's golf team." dict_4 = {(0, 12): {"Q7381115": 0.0, "Q2146908": 1.0}} train_data.append((text_4, {"links": dict_4})) return train_data # training data TRAIN_DATA = sample_train_data() @plac.annotations( kb_path=("Path to the knowledge base", "positional", None, Path), vocab_path=("Path to the vocab for the kb", "positional", None, Path), output_dir=("Optional output directory", "option", "o", Path), n_iter=("Number of training iterations", "option", "n", int), ) def main(kb_path, vocab_path, output_dir=None, n_iter=50): """Create a blank model with the specified vocab, set up the pipeline and train the entity linker. The `vocab` should be the one used during creation of the KB.""" # create blank English model with correct vocab nlp = spacy.blank("en") nlp.vocab.from_disk(vocab_path) nlp.vocab.vectors.name = "spacy_pretrained_vectors" print("Created blank 'en' model with vocab from '%s'" % vocab_path) # Add a sentencizer component. Alternatively, add a dependency parser for higher accuracy. nlp.add_pipe(nlp.create_pipe("sentencizer")) # Add a custom component to recognize "Russ Cochran" as an entity for the example training data. # Note that in a realistic application, an actual NER algorithm should be used instead. ruler = EntityRuler(nlp) patterns = [ {"label": "PERSON", "pattern": [{"LOWER": "russ"}, {"LOWER": "cochran"}]} ] ruler.add_patterns(patterns) nlp.add_pipe(ruler) # Create the Entity Linker component and add it to the pipeline. if "entity_linker" not in nlp.pipe_names: kb = KnowledgeBase(vocab=nlp.vocab) kb.load_bulk(kb_path) print("Loaded Knowledge Base from '%s'" % kb_path) # use only the predicted EL score and not the prior probability (for demo purposes) cfg = {"kb": kb, "incl_prior": False} entity_linker = nlp.create_pipe("entity_linker", cfg) nlp.add_pipe(entity_linker, last=True) # Convert the texts to docs to make sure we have doc.ents set for the training examples. # Also ensure that the annotated examples correspond to known identifiers in the knowledge base. kb_ids = nlp.get_pipe("entity_linker").kb.get_entity_strings() train_examples = [] for text, annotation in TRAIN_DATA: with nlp.select_pipes(disable="entity_linker"): doc = nlp(text) annotation_clean = annotation for offset, kb_id_dict in annotation["links"].items(): new_dict = {} for kb_id, value in kb_id_dict.items(): if kb_id in kb_ids: new_dict[kb_id] = value else: print( "Removed", kb_id, "from training because it is not in the KB." ) annotation_clean["links"][offset] = new_dict train_examples.append(Example.from_dict(doc, annotation_clean)) with nlp.select_pipes(enable="entity_linker"): # only train entity linker # reset and initialize the weights randomly optimizer = nlp.begin_training() for itn in range(n_iter): random.shuffle(train_examples) losses = {} # batch up the examples using spaCy's minibatch batches = minibatch(train_examples, size=compounding(4.0, 32.0, 1.001)) for batch in batches: nlp.update( batch, drop=0.2, # dropout - make it harder to memorise data losses=losses, sgd=optimizer, ) print(itn, "Losses", losses) # test the trained model _apply_model(nlp) # save model to output directory if output_dir is not None: output_dir = Path(output_dir) if not output_dir.exists(): output_dir.mkdir() nlp.to_disk(output_dir) print() print("Saved model to", output_dir) # test the saved model print("Loading from", output_dir) nlp2 = spacy.load(output_dir) _apply_model(nlp2) def _apply_model(nlp): for text, annotation in TRAIN_DATA: # apply the entity linker which will now make predictions for the 'Russ Cochran' entities doc = nlp(text) print() print("Entities", [(ent.text, ent.label_, ent.kb_id_) for ent in doc.ents]) print("Tokens", [(t.text, t.ent_type_, t.ent_kb_id_) for t in doc]) if __name__ == "__main__": plac.call(main) # Expected output (can be shuffled): # Entities[('Russ Cochran', 'PERSON', 'Q7381115')] # Tokens[('Russ', 'PERSON', 'Q7381115'), ('Cochran', 'PERSON', 'Q7381115'), ("his", '', ''), ('reprints', '', ''), ('include', '', ''), ('The', '', ''), ('Complete', '', ''), ('EC', '', ''), ('Library', '', ''), ('.', '', '')] # Entities[('Russ Cochran', 'PERSON', 'Q7381115')] # Tokens[('Russ', 'PERSON', 'Q7381115'), ('Cochran', 'PERSON', 'Q7381115'), ('has', '', ''), ('been', '', ''), ('publishing', '', ''), ('comic', '', ''), ('art', '', ''), ('.', '', '')] # Entities[('Russ Cochran', 'PERSON', 'Q2146908')] # Tokens[('Russ', 'PERSON', 'Q2146908'), ('Cochran', 'PERSON', 'Q2146908'), ('captured', '', ''), ('his', '', ''), ('first', '', ''), ('major', '', ''), ('title', '', ''), ('with', '', ''), ('his', '', ''), ('son', '', ''), ('as', '', ''), ('caddie', '', ''), ('.', '', '')] # Entities[('Russ Cochran', 'PERSON', 'Q2146908')] # Tokens[('Russ', 'PERSON', 'Q2146908'), ('Cochran', 'PERSON', 'Q2146908'), ('was', '', ''), ('a', '', ''), ('member', '', ''), ('of', '', ''), ('University', '', ''), ('of', '', ''), ('Kentucky', '', ''), ("'s", '', ''), ('golf', '', ''), ('team', '', ''), ('.', '', '')]