from __future__ import absolute_import from __future__ import unicode_literals from warnings import warn import pathlib from contextlib import contextmanager import shutil try: import ujson as json except ImportError: import json try: basestring except NameError: basestring = str from .tokenizer import Tokenizer from .vocab import Vocab from .syntax.parser import Parser from .tagger import Tagger from .matcher import Matcher from . import attrs from . import orth from . import util from .lemmatizer import Lemmatizer from .train import Trainer from .attrs import TAG, DEP, ENT_IOB, ENT_TYPE, HEAD, PROB, LANG, IS_STOP from .syntax.parser import get_templates from .syntax.nonproj import PseudoProjectivity from .pipeline import DependencyParser, EntityRecognizer class BaseDefaults(object): def __init__(self, lang, path): self.path = path self.lang = lang self.lex_attr_getters = dict(self.__class__.lex_attr_getters) if self.path and (self.path / 'vocab' / 'oov_prob').exists(): with (self.path / 'vocab' / 'oov_prob').open() as file_: oov_prob = file_.read().strip() self.lex_attr_getters[PROB] = lambda string: oov_prob self.lex_attr_getters[LANG] = lambda string: lang self.lex_attr_getters[IS_STOP] = lambda string: string in self.stop_words def Lemmatizer(self): return Lemmatizer.load(self.path) if self.path else Lemmatizer({}, {}, {}) def Vectors(self): return True def Vocab(self, lex_attr_getters=True, tag_map=True, lemmatizer=True, serializer_freqs=True, vectors=True): if lex_attr_getters is True: lex_attr_getters = self.lex_attr_getters if tag_map is True: tag_map = self.tag_map if lemmatizer is True: lemmatizer = self.Lemmatizer() if vectors is True: vectors = self.Vectors() if self.path: return Vocab.load(self.path, lex_attr_getters=lex_attr_getters, tag_map=tag_map, lemmatizer=lemmatizer, serializer_freqs=serializer_freqs) else: return Vocab(lex_attr_getters=lex_attr_getters, tag_map=tag_map, lemmatizer=lemmatizer, serializer_freqs=serializer_freqs) def Tokenizer(self, vocab, rules=None, prefix_search=None, suffix_search=None, infix_finditer=None): if rules is None: rules = self.tokenizer_exceptions if prefix_search is None: prefix_search = util.compile_prefix_regex(self.prefixes).search if suffix_search is None: suffix_search = util.compile_suffix_regex(self.suffixes).search if infix_finditer is None: infix_finditer = util.compile_infix_regex(self.infixes).finditer if self.path: return Tokenizer.load(self.path, vocab, rules=rules, prefix_search=prefix_search, suffix_search=suffix_search, infix_finditer=infix_finditer) else: tokenizer = Tokenizer(vocab, rules=rules, prefix_search=prefix_search, suffix_search=suffix_search, infix_finditer=infix_finditer) return tokenizer def Tagger(self, vocab, **cfg): if self.path: return Tagger.load(self.path / 'pos', vocab) else: return Tagger.blank(vocab, Tagger.default_templates()) def Parser(self, vocab, **cfg): if self.path and (self.path / 'deps').exists(): return DependencyParser.load(self.path / 'deps', vocab) else: if 'features' not in cfg: cfg['features'] = self.parser_features return DependencyParser.blank(vocab, **cfg) def Entity(self, vocab, **cfg): if self.path and (self.path / 'ner').exists(): return EntityRecognizer.load(self.path / 'ner', vocab) else: if 'features' not in cfg: cfg['features'] = self.entity_features return EntityRecognizer.blank(vocab, **cfg) def Matcher(self, vocab, **cfg): if self.path: return Matcher.load(self.path, vocab) else: return Matcher(vocab) def MakeDoc(self, nlp, **cfg): return lambda text: nlp.tokenizer(text) def Pipeline(self, nlp, **cfg): pipeline = [] if nlp.tagger: pipeline.append(nlp.tagger) if nlp.parser: pipeline.append(nlp.parser) if nlp.entity: pipeline.append(nlp.entity) return pipeline prefixes = tuple() suffixes = tuple() infixes = tuple() tag_map = {} tokenizer_exceptions = {} parser_features = get_templates('parser') entity_features = get_templates('ner') stop_words = set() lex_attr_getters = { attrs.LOWER: lambda string: string.lower(), attrs.NORM: lambda string: string, attrs.SHAPE: orth.word_shape, attrs.PREFIX: lambda string: string[0], attrs.SUFFIX: lambda string: string[-3:], attrs.CLUSTER: lambda string: 0, attrs.IS_ALPHA: orth.is_alpha, attrs.IS_ASCII: orth.is_ascii, attrs.IS_DIGIT: lambda string: string.isdigit(), attrs.IS_LOWER: orth.is_lower, attrs.IS_PUNCT: orth.is_punct, attrs.IS_SPACE: lambda string: string.isspace(), attrs.IS_TITLE: orth.is_title, attrs.IS_UPPER: orth.is_upper, attrs.IS_BRACKET: orth.is_bracket, attrs.IS_QUOTE: orth.is_quote, attrs.IS_LEFT_PUNCT: orth.is_left_punct, attrs.IS_RIGHT_PUNCT: orth.is_right_punct, attrs.LIKE_URL: orth.like_url, attrs.LIKE_NUM: orth.like_number, attrs.LIKE_EMAIL: orth.like_email, attrs.IS_STOP: lambda string: False, attrs.IS_OOV: lambda string: True } class Language(object): '''A text-processing pipeline. Usually you'll load this once per process, and pass the instance around your program. ''' Defaults = BaseDefaults lang = None @classmethod @contextmanager def train(cls, path, gold_tuples, *configs): if isinstance(path, basestring): path = pathlib.Path(path) tagger_cfg, parser_cfg, entity_cfg = configs dep_model_dir = path / 'deps' ner_model_dir = path / 'ner' pos_model_dir = path / 'pos' if dep_model_dir.exists(): shutil.rmtree(str(dep_model_dir)) if ner_model_dir.exists(): shutil.rmtree(str(ner_model_dir)) if pos_model_dir.exists(): shutil.rmtree(str(pos_model_dir)) dep_model_dir.mkdir() ner_model_dir.mkdir() pos_model_dir.mkdir() if parser_cfg['pseudoprojective']: # preprocess training data here before ArcEager.get_labels() is called gold_tuples = PseudoProjectivity.preprocess_training_data(gold_tuples) parser_cfg['labels'] = ArcEager.get_labels(gold_tuples) entity_cfg['labels'] = BiluoPushDown.get_labels(gold_tuples) with (dep_model_dir / 'config.json').open('wb') as file_: json.dump(parser_cfg, file_) with (ner_model_dir / 'config.json').open('wb') as file_: json.dump(entity_cfg, file_) with (pos_model_dir / 'config.json').open('wb') as file_: json.dump(tagger_cfg, file_) self = cls( path=path, vocab=False, tokenizer=False, tagger=False, parser=False, entity=False, matcher=False, serializer=False, vectors=False, pipeline=False) self.defaults.parser_labels = parser_cfg['labels'] self.defaults.entity_labels = entity_cfg['labels'] self.vocab = self.defaults.Vocab() self.tokenizer = self.defaults.Tokenizer(self.vocab) self.tagger = self.defaults.Tagger(self.vocab, **tagger_cfg) self.parser = self.defaults.Parser(self.vocab, **parser_cfg) self.entity = self.defaults.Entity(self.vocab, **entity_cfg) self.pipeline = self.defaults.Pipeline(self) yield Trainer(self, gold_tuples) self.end_training() def __init__(self, path=True, vocab=True, tokenizer=True, tagger=True, parser=True, entity=True, matcher=True, serializer=True, vectors=True, make_doc=True, pipeline=True, defaults=True, data_dir=None): """ A model can be specified: 1) by calling a Language subclass - spacy.en.English() 2) by calling a Language subclass with data_dir - spacy.en.English('my/model/root') - spacy.en.English(data_dir='my/model/root') 3) by package name - spacy.load('en_default') - spacy.load('en_default==1.0.0') 4) by package name with a relocated package base - spacy.load('en_default', via='/my/package/root') - spacy.load('en_default==1.0.0', via='/my/package/root') """ if data_dir is not None and path is None: warn("'data_dir' argument now named 'path'. Doing what you mean.") path = data_dir if isinstance(path, basestring): path = pathlib.Path(path) if path is True: path = util.match_best_version(self.lang, '', util.get_data_path()) self.path = path defaults = defaults if defaults is not True else self.get_defaults(self.path) self.defaults = defaults self.vocab = vocab if vocab is not True else defaults.Vocab(vectors=vectors) self.tokenizer = tokenizer if tokenizer is not True else defaults.Tokenizer(self.vocab) self.tagger = tagger if tagger is not True else defaults.Tagger(self.vocab) self.entity = entity if entity is not True else defaults.Entity(self.vocab) self.parser = parser if parser is not True else defaults.Parser(self.vocab) self.matcher = matcher if matcher is not True else defaults.Matcher(self.vocab) if make_doc in (None, True, False): self.make_doc = defaults.MakeDoc(self) else: self.make_doc = make_doc if pipeline in (None, False): self.pipeline = [] elif pipeline is True: self.pipeline = defaults.Pipeline(self) else: self.pipeline = pipeline(self) def __reduce__(self): args = ( self.path, self.vocab, self.tokenizer, self.tagger, self.parser, self.entity, self.matcher ) return (self.__class__, args, None, None) def __call__(self, text, tag=True, parse=True, entity=True): """Apply the pipeline to some text. The text can span multiple sentences, and can contain arbtrary whitespace. Alignment into the original string is preserved. Args: text (unicode): The text to be processed. Returns: tokens (spacy.tokens.Doc): >>> from spacy.en import English >>> nlp = English() >>> tokens = nlp('An example sentence. Another example sentence.') >>> tokens[0].orth_, tokens[0].head.tag_ ('An', 'NN') """ doc = self.make_doc(text) if self.entity and entity: # Add any of the entity labels already set, in case we don't have them. for token in doc: if token.ent_type != 0: self.entity.add_label(token.ent_type) skip = {self.tagger: not tag, self.parser: not parse, self.entity: not entity} for proc in self.pipeline: if proc and not skip.get(proc): proc(doc) return doc def pipe(self, texts, tag=True, parse=True, entity=True, n_threads=2, batch_size=1000): skip = {self.tagger: not tag, self.parser: not parse, self.entity: not entity} stream = (self.make_doc(text) for text in texts) for proc in self.pipeline: if proc and not skip.get(proc): if hasattr(proc, 'pipe'): stream = proc.pipe(stream, n_threads=n_threads, batch_size=batch_size) else: stream = (proc(item) for item in stream) for doc in stream: yield doc def end_training(self, path=None): if path is None: path = self.path elif isinstance(path, basestring): path = pathlib.Path(path) if self.tagger: self.tagger.model.end_training() self.tagger.model.dump(str(path / 'pos' / 'model')) if self.parser: self.parser.model.end_training() self.parser.model.dump(str(path / 'deps' / 'model')) if self.entity: self.entity.model.end_training() self.entity.model.dump(str(path / 'ner' / 'model')) strings_loc = path / 'vocab' / 'strings.json' with strings_loc.open('w', encoding='utf8') as file_: self.vocab.strings.dump(file_) self.vocab.dump(path / 'vocab' / 'lexemes.bin') if self.tagger: tagger_freqs = list(self.tagger.freqs[TAG].items()) else: tagger_freqs = [] if self.parser: dep_freqs = list(self.parser.moves.freqs[DEP].items()) head_freqs = list(self.parser.moves.freqs[HEAD].items()) else: dep_freqs = [] head_freqs = [] if self.entity: entity_iob_freqs = list(self.entity.moves.freqs[ENT_IOB].items()) entity_type_freqs = list(self.entity.moves.freqs[ENT_TYPE].items()) else: entity_iob_freqs = [] entity_type_freqs = [] with (path / 'vocab' / 'serializer.json').open('wb') as file_: file_.write( json.dumps([ (TAG, tagger_freqs), (DEP, dep_freqs), (ENT_IOB, entity_iob_freqs), (ENT_TYPE, entity_type_freqs), (HEAD, head_freqs) ])) def get_defaults(self, path): return self.Defaults(self.lang, path)