from __future__ import unicode_literals from collections import defaultdict import numpy import numpy.linalg cimport numpy as np import math import six from ..structs cimport TokenC, LexemeC from ..typedefs cimport flags_t, attr_t from ..attrs cimport attr_id_t from ..parts_of_speech cimport univ_pos_t from ..util import normalize_slice from .doc cimport token_by_start, token_by_end cdef class Span: """A slice from a Doc object.""" def __cinit__(self, Doc tokens, int start, int end, int label=0, vector=None, vector_norm=None): if not (0 <= start <= end <= len(tokens)): raise IndexError self.doc = tokens self.start = start self.start_char = self.doc[start].idx if start < self.doc.length else 0 self.end = end if end >= 1: self.end_char = self.doc[end - 1].idx + len(self.doc[end - 1]) else: self.end_char = 0 self.label = label self._vector = vector self._vector_norm = vector_norm def __richcmp__(self, Span other, int op): # Eq if op == 0: return self.start_char < other.start_char elif op == 1: return self.start_char <= other.start_char elif op == 2: return self.start_char == other.start_char and self.end_char == other.end_char elif op == 3: return self.start_char != other.start_char or self.end_char != other.end_char elif op == 4: return self.start_char > other.start_char elif op == 5: return self.start_char >= other.start_char def __len__(self): self._recalculate_indices() if self.end < self.start: return 0 return self.end - self.start def __repr__(self): if six.PY3: return self.text return self.text.encode('utf-8') def __getitem__(self, object i): self._recalculate_indices() if isinstance(i, slice): start, end = normalize_slice(len(self), i.start, i.stop, i.step) return Span(self.doc, start + self.start, end + self.start) else: if i < 0: return self.doc[self.end + i] else: return self.doc[self.start + i] def __iter__(self): self._recalculate_indices() for i in range(self.start, self.end): yield self.doc[i] def merge(self, unicode tag, unicode lemma, unicode ent_type): self.doc.merge(self.start_char, self.end_char, tag, lemma, ent_type) def similarity(self, other): if self.vector_norm == 0.0 or other.vector_norm == 0.0: return 0.0 return numpy.dot(self.vector, other.vector) / (self.vector_norm * other.vector_norm) cpdef int _recalculate_indices(self) except -1: if self.end > self.doc.length \ or self.doc.c[self.start].idx != self.start_char \ or (self.doc.c[self.end-1].idx + self.doc.c[self.end-1].lex.length) != self.end_char: start = token_by_start(self.doc.c, self.doc.length, self.start_char) if self.start == -1: raise IndexError("Error calculating span: Can't find start") end = token_by_end(self.doc.c, self.doc.length, self.end_char) if end == -1: raise IndexError("Error calculating span: Can't find end") self.start = start self.end = end + 1 property vector: def __get__(self): if self._vector is None: self._vector = sum(t.vector for t in self) / len(self) return self._vector property vector_norm: def __get__(self): cdef float value if self._vector_norm is None: self._vector_norm = 1e-20 for value in self.vector: self._vector_norm += value * value self._vector_norm = math.sqrt(self._vector_norm) return self._vector_norm property text: def __get__(self): text = self.text_with_ws if self[-1].whitespace_: text = text[:-1] return text property text_with_ws: def __get__(self): return u''.join([t.text_with_ws for t in self]) property root: """The word of the span that is highest in the parse tree, i.e. has the shortest path to the root of the sentence (or is the root itself). If multiple words are equally high in the tree, the first word is taken. For example: >>> toks = nlp(u'I like New York in Autumn.') Let's name the indices --- easier than writing "toks[4]" etc. >>> i, like, new, york, in_, autumn, dot = range(len(toks)) The head of 'new' is 'York', and the head of 'York' is 'like' >>> toks[new].head.orth_ 'York' >>> toks[york].head.orth_ 'like' Create a span for "New York". Its root is "York". >>> new_york = toks[new:york+1] >>> new_york.root.orth_ 'York' Here's a more complicated case, raise by Issue #214 >>> toks = nlp(u'to, north and south carolina') >>> to, north, and_, south, carolina = toks >>> south.head.text, carolina.head.text ('north', 'to') Here 'south' is a child of 'north', which is a child of 'carolina'. Carolina is the root of the span: >>> south_carolina = toks[-2:] >>> south_carolina.root.text 'carolina' """ def __get__(self): self._recalculate_indices() # This should probably be called 'head', and the other one called # 'gov'. But we went with 'head' elsehwhere, and now we're stuck =/ cdef int i # First, we scan through the Span, and check whether there's a word # with head==0, i.e. a sentence root. If so, we can return it. The # longer the span, the more likely it contains a sentence root, and # in this case we return in linear time. for i in range(self.start, self.end): if self.doc.c[i].head == 0: return i # If we don't have a sentence root, we do something that's not so # algorithmically clever, but I think should be quite fast, especially # for short spans. # For each word, we count the path length, and arg min this measure. # We could use better tree logic to save steps here...But I think this # should be okay. cdef int current_best = _count_words_to_root(&self.doc.c[self.start], self.doc.length) cdef int root = self.start for i in range(self.start, self.end): if current_best == 0: break words_to_root = _count_words_to_root(&self.doc.c[i], self.doc.length) if words_to_root < current_best: current_best = words_to_root root = i return self.doc[root] property lefts: """Tokens that are to the left of the Span, whose head is within the Span.""" def __get__(self): for token in reversed(self): # Reverse, so we get the tokens in order for left in token.lefts: if left.i < self.start: yield left property rights: """Tokens that are to the right of the Span, whose head is within the Span.""" def __get__(self): for token in self: for right in token.rights: if right.i >= self.end: yield right property subtree: def __get__(self): for word in self.lefts: yield from word.subtree yield from self for word in self.rights: yield from word.subtree property orth_: def __get__(self): return ''.join([t.string for t in self]).strip() property lemma_: def __get__(self): return ' '.join([t.lemma_ for t in self]).strip() property string: def __get__(self): return ''.join([t.string for t in self]) property label_: def __get__(self): return self.doc.vocab.strings[self.label] cdef int _count_words_to_root(const TokenC* token, int sent_length) except -1: cdef int n = 0 while token.head != 0: token += token.head n += 1 if n >= sent_length: raise RuntimeError( "Array bounds exceeded while searching for root word. This likely " "means the parse tree is in an invalid state. Please report this " "issue here: http://github.com/honnibal/spaCy/") token += token.head return n