# coding: utf-8 from __future__ import unicode_literals import importlib import pytest from spacy.util import get_lang_class # fmt: off # Only include languages with no external dependencies # excluded: ja, ru, th, uk, vi, zh LANGUAGES = ["af", "ar", "bg", "bn", "ca", "cs", "da", "de", "el", "en", "es", "et", "fa", "fi", "fr", "ga", "he", "hi", "hr", "hu", "id", "is", "it", "kn", "lt", "lv", "nb", "nl", "pl", "pt", "ro", "si", "sk", "sl", "sq", "sr", "sv", "ta", "te", "tl", "tr", "tt", "ur"] # fmt: on @pytest.mark.slow @pytest.mark.parametrize("lang", LANGUAGES) def test_tokenizer_explain(lang): nlp = get_lang_class(lang)() try: examples = importlib.import_module("spacy.lang." + lang + ".examples") for sentence in examples.sentences: tokens = [t.text for t in nlp.tokenizer(sentence) if not t.is_space] debug_tokens = [t[1] for t in nlp.tokenizer.explain(sentence)] assert tokens == debug_tokens except: pass