import pytest from spacy import util from spacy.lang.en import English from spacy.pipeline.defaults import default_ner from spacy.pipeline import EntityRecognizer, EntityRuler from spacy.vocab import Vocab from spacy.syntax.ner import BiluoPushDown from spacy.gold import GoldParse from spacy.tests.util import make_tempdir from spacy.tokens import Doc TRAIN_DATA = [ ("Who is Shaka Khan?", {"entities": [(7, 17, "PERSON")]}), ("I like London and Berlin.", {"entities": [(7, 13, "LOC"), (18, 24, "LOC")]}), ] @pytest.fixture def vocab(): return Vocab() @pytest.fixture def doc(vocab): return Doc(vocab, words=["Casey", "went", "to", "New", "York", "."]) @pytest.fixture def entity_annots(doc): casey = doc[0:1] ny = doc[3:5] return [ (casey.start_char, casey.end_char, "PERSON"), (ny.start_char, ny.end_char, "GPE"), ] @pytest.fixture def entity_types(entity_annots): return sorted(set([label for (s, e, label) in entity_annots])) @pytest.fixture def tsys(vocab, entity_types): actions = BiluoPushDown.get_actions(entity_types=entity_types) return BiluoPushDown(vocab.strings, actions) def test_get_oracle_moves(tsys, doc, entity_annots): gold = GoldParse(doc, entities=entity_annots) tsys.preprocess_gold(gold) act_classes = tsys.get_oracle_sequence(doc, gold) names = [tsys.get_class_name(act) for act in act_classes] assert names == ["U-PERSON", "O", "O", "B-GPE", "L-GPE", "O"] def test_get_oracle_moves_negative_entities(tsys, doc, entity_annots): entity_annots = [(s, e, "!" + label) for s, e, label in entity_annots] gold = GoldParse(doc, entities=entity_annots) for i, tag in enumerate(gold.ner): if tag == "L-!GPE": gold.ner[i] = "-" tsys.preprocess_gold(gold) act_classes = tsys.get_oracle_sequence(doc, gold) names = [tsys.get_class_name(act) for act in act_classes] assert names def test_get_oracle_moves_negative_entities2(tsys, vocab): doc = Doc(vocab, words=["A", "B", "C", "D"]) gold = GoldParse(doc, entities=[]) gold.ner = ["B-!PERSON", "L-!PERSON", "B-!PERSON", "L-!PERSON"] tsys.preprocess_gold(gold) act_classes = tsys.get_oracle_sequence(doc, gold) names = [tsys.get_class_name(act) for act in act_classes] assert names def test_get_oracle_moves_negative_O(tsys, vocab): doc = Doc(vocab, words=["A", "B", "C", "D"]) gold = GoldParse(doc, entities=[]) gold.ner = ["O", "!O", "O", "!O"] tsys.preprocess_gold(gold) act_classes = tsys.get_oracle_sequence(doc, gold) names = [tsys.get_class_name(act) for act in act_classes] assert names def test_oracle_moves_missing_B(en_vocab): words = ["B", "52", "Bomber"] biluo_tags = [None, None, "L-PRODUCT"] doc = Doc(en_vocab, words=words) gold = GoldParse(doc, words=words, entities=biluo_tags) moves = BiluoPushDown(en_vocab.strings) move_types = ("M", "B", "I", "L", "U", "O") for tag in biluo_tags: if tag is None: continue elif tag == "O": moves.add_action(move_types.index("O"), "") else: action, label = tag.split("-") moves.add_action(move_types.index("B"), label) moves.add_action(move_types.index("I"), label) moves.add_action(move_types.index("L"), label) moves.add_action(move_types.index("U"), label) moves.preprocess_gold(gold) moves.get_oracle_sequence(doc, gold) def test_oracle_moves_whitespace(en_vocab): words = ["production", "\n", "of", "Northrop", "\n", "Corp.", "\n", "'s", "radar"] biluo_tags = ["O", "O", "O", "B-ORG", None, "I-ORG", "L-ORG", "O", "O"] doc = Doc(en_vocab, words=words) gold = GoldParse(doc, words=words, entities=biluo_tags) moves = BiluoPushDown(en_vocab.strings) move_types = ("M", "B", "I", "L", "U", "O") for tag in biluo_tags: if tag is None: continue elif tag == "O": moves.add_action(move_types.index("O"), "") else: action, label = tag.split("-") moves.add_action(move_types.index(action), label) moves.preprocess_gold(gold) moves.get_oracle_sequence(doc, gold) def test_accept_blocked_token(): """Test succesful blocking of tokens to be in an entity.""" # 1. test normal behaviour nlp1 = English() doc1 = nlp1("I live in New York") ner1 = EntityRecognizer(doc1.vocab, default_ner()) assert [token.ent_iob_ for token in doc1] == ["", "", "", "", ""] assert [token.ent_type_ for token in doc1] == ["", "", "", "", ""] # Add the OUT action ner1.moves.add_action(5, "") ner1.add_label("GPE") # Get into the state just before "New" state1 = ner1.moves.init_batch([doc1])[0] ner1.moves.apply_transition(state1, "O") ner1.moves.apply_transition(state1, "O") ner1.moves.apply_transition(state1, "O") # Check that B-GPE is valid. assert ner1.moves.is_valid(state1, "B-GPE") # 2. test blocking behaviour nlp2 = English() doc2 = nlp2("I live in New York") ner2 = EntityRecognizer(doc2.vocab, default_ner()) # set "New York" to a blocked entity doc2.ents = [(0, 3, 5)] assert [token.ent_iob_ for token in doc2] == ["", "", "", "B", "B"] assert [token.ent_type_ for token in doc2] == ["", "", "", "", ""] # Check that B-GPE is now invalid. ner2.moves.add_action(4, "") ner2.moves.add_action(5, "") ner2.add_label("GPE") state2 = ner2.moves.init_batch([doc2])[0] ner2.moves.apply_transition(state2, "O") ner2.moves.apply_transition(state2, "O") ner2.moves.apply_transition(state2, "O") # we can only use U- for "New" assert not ner2.moves.is_valid(state2, "B-GPE") assert ner2.moves.is_valid(state2, "U-") ner2.moves.apply_transition(state2, "U-") # we can only use U- for "York" assert not ner2.moves.is_valid(state2, "B-GPE") assert ner2.moves.is_valid(state2, "U-") def test_overwrite_token(): nlp = English() ner1 = nlp.create_pipe("ner") nlp.add_pipe(ner1, name="ner") nlp.begin_training() # The untrained NER will predict O for each token doc = nlp("I live in New York") assert [token.ent_iob_ for token in doc] == ["O", "O", "O", "O", "O"] assert [token.ent_type_ for token in doc] == ["", "", "", "", ""] # Check that a new ner can overwrite O ner2 = EntityRecognizer(doc.vocab, default_ner()) ner2.moves.add_action(5, "") ner2.add_label("GPE") state = ner2.moves.init_batch([doc])[0] assert ner2.moves.is_valid(state, "B-GPE") assert ner2.moves.is_valid(state, "U-GPE") ner2.moves.apply_transition(state, "B-GPE") assert ner2.moves.is_valid(state, "I-GPE") assert ner2.moves.is_valid(state, "L-GPE") def test_empty_ner(): nlp = English() ner = nlp.create_pipe("ner") ner.add_label("MY_LABEL") nlp.add_pipe(ner) nlp.begin_training() doc = nlp("John is watching the news about Croatia's elections") # if this goes wrong, the initialization of the parser's upper layer is probably broken result = ["O", "O", "O", "O", "O", "O", "O", "O", "O"] assert [token.ent_iob_ for token in doc] == result def test_ruler_before_ner(): """ Test that an NER works after an entity_ruler: the second can add annotations """ nlp = English() # 1 : Entity Ruler - should set "this" to B and everything else to empty ruler = EntityRuler(nlp) patterns = [{"label": "THING", "pattern": "This"}] ruler.add_patterns(patterns) nlp.add_pipe(ruler) # 2: untrained NER - should set everything else to O untrained_ner = nlp.create_pipe("ner") untrained_ner.add_label("MY_LABEL") nlp.add_pipe(untrained_ner) nlp.begin_training() doc = nlp("This is Antti Korhonen speaking in Finland") expected_iobs = ["B", "O", "O", "O", "O", "O", "O"] expected_types = ["THING", "", "", "", "", "", ""] assert [token.ent_iob_ for token in doc] == expected_iobs assert [token.ent_type_ for token in doc] == expected_types def test_ner_before_ruler(): """ Test that an entity_ruler works after an NER: the second can overwrite O annotations """ nlp = English() # 1: untrained NER - should set everything to O untrained_ner = nlp.create_pipe("ner") untrained_ner.add_label("MY_LABEL") nlp.add_pipe(untrained_ner, name="uner") nlp.begin_training() # 2 : Entity Ruler - should set "this" to B and keep everything else O ruler = EntityRuler(nlp) patterns = [{"label": "THING", "pattern": "This"}] ruler.add_patterns(patterns) nlp.add_pipe(ruler) doc = nlp("This is Antti Korhonen speaking in Finland") expected_iobs = ["B", "O", "O", "O", "O", "O", "O"] expected_types = ["THING", "", "", "", "", "", ""] assert [token.ent_iob_ for token in doc] == expected_iobs assert [token.ent_type_ for token in doc] == expected_types def test_block_ner(): """ Test functionality for blocking tokens so they can't be in a named entity """ # block "Antti L Korhonen" from being a named entity nlp = English() nlp.add_pipe(BlockerComponent1(2, 5)) untrained_ner = nlp.create_pipe("ner") untrained_ner.add_label("MY_LABEL") nlp.add_pipe(untrained_ner, name="uner") nlp.begin_training() doc = nlp("This is Antti L Korhonen speaking in Finland") expected_iobs = ["O", "O", "B", "B", "B", "O", "O", "O"] expected_types = ["", "", "", "", "", "", "", ""] assert [token.ent_iob_ for token in doc] == expected_iobs assert [token.ent_type_ for token in doc] == expected_types def test_overfitting_IO(): # Simple test to try and quickly overfit the NER component - ensuring the ML models work correctly nlp = English() ner = nlp.create_pipe("ner") for _, annotations in TRAIN_DATA: for ent in annotations.get("entities"): ner.add_label(ent[2]) nlp.add_pipe(ner) optimizer = nlp.begin_training() for i in range(50): losses = {} nlp.update(TRAIN_DATA, sgd=optimizer, losses=losses) assert losses["ner"] < 0.00001 # test the trained model test_text = "I like London." doc = nlp(test_text) ents = doc.ents assert len(ents) == 1 assert ents[0].text == "London" assert ents[0].label_ == "LOC" # Also test the results are still the same after IO with make_tempdir() as tmp_dir: nlp.to_disk(tmp_dir) nlp2 = util.load_model_from_path(tmp_dir) doc2 = nlp2(test_text) ents2 = doc2.ents assert len(ents2) == 1 assert ents2[0].text == "London" assert ents2[0].label_ == "LOC" class BlockerComponent1(object): name = "my_blocker" def __init__(self, start, end): self.start = start self.end = end def __call__(self, doc): doc.ents = [(0, self.start, self.end)] return doc