#!/usr/bin/env python # coding: utf-8 """Using the parser to recognise your own semantics spaCy's parser component can be used to trained to predict any type of tree structure over your input text. You can also predict trees over whole documents or chat logs, with connections between the sentence-roots used to annotate discourse structure. In this example, we'll build a message parser for a common "chat intent": finding local businesses. Our message semantics will have the following types of relations: ROOT, PLACE, QUALITY, ATTRIBUTE, TIME, LOCATION. "show me the best hotel in berlin" ('show', 'ROOT', 'show') ('best', 'QUALITY', 'hotel') --> hotel with QUALITY best ('hotel', 'PLACE', 'show') --> show PLACE hotel ('berlin', 'LOCATION', 'hotel') --> hotel with LOCATION berlin Compatible with: spaCy v2.0.0+ """ from __future__ import unicode_literals, print_function import plac import random from pathlib import Path import spacy from spacy.util import minibatch, compounding # training data: texts, heads and dependency labels # for no relation, we simply chose an arbitrary dependency label, e.g. '-' TRAIN_DATA = [ ( "find a cafe with great wifi", { "heads": [0, 2, 0, 5, 5, 2], # index of token head "deps": ["ROOT", "-", "PLACE", "-", "QUALITY", "ATTRIBUTE"], }, ), ( "find a hotel near the beach", { "heads": [0, 2, 0, 5, 5, 2], "deps": ["ROOT", "-", "PLACE", "QUALITY", "-", "ATTRIBUTE"], }, ), ( "find me the closest gym that's open late", { "heads": [0, 0, 4, 4, 0, 6, 4, 6, 6], "deps": [ "ROOT", "-", "-", "QUALITY", "PLACE", "-", "-", "ATTRIBUTE", "TIME", ], }, ), ( "show me the cheapest store that sells flowers", { "heads": [0, 0, 4, 4, 0, 4, 4, 4], # attach "flowers" to store! "deps": ["ROOT", "-", "-", "QUALITY", "PLACE", "-", "-", "PRODUCT"], }, ), ( "find a nice restaurant in london", { "heads": [0, 3, 3, 0, 3, 3], "deps": ["ROOT", "-", "QUALITY", "PLACE", "-", "LOCATION"], }, ), ( "show me the coolest hostel in berlin", { "heads": [0, 0, 4, 4, 0, 4, 4], "deps": ["ROOT", "-", "-", "QUALITY", "PLACE", "-", "LOCATION"], }, ), ( "find a good italian restaurant near work", { "heads": [0, 4, 4, 4, 0, 4, 5], "deps": [ "ROOT", "-", "QUALITY", "ATTRIBUTE", "PLACE", "ATTRIBUTE", "LOCATION", ], }, ), ] @plac.annotations( model=("Model name. Defaults to blank 'en' model.", "option", "m", str), output_dir=("Optional output directory", "option", "o", Path), n_iter=("Number of training iterations", "option", "n", int), ) def main(model=None, output_dir=None, n_iter=15): """Load the model, set up the pipeline and train the parser.""" if model is not None: nlp = spacy.load(model) # load existing spaCy model print("Loaded model '%s'" % model) else: nlp = spacy.blank("en") # create blank Language class print("Created blank 'en' model") # We'll use the built-in dependency parser class, but we want to create a # fresh instance – just in case. if "parser" in nlp.pipe_names: nlp.remove_pipe("parser") parser = nlp.create_pipe("parser") nlp.add_pipe(parser, first=True) for text, annotations in TRAIN_DATA: for dep in annotations.get("deps", []): parser.add_label(dep) with nlp.select_pipes(enable="parser"): # only train parser optimizer = nlp.begin_training() for itn in range(n_iter): random.shuffle(TRAIN_DATA) losses = {} # batch up the examples using spaCy's minibatch batches = minibatch(TRAIN_DATA, size=compounding(4.0, 32.0, 1.001)) for batch in batches: nlp.update(batch, sgd=optimizer, losses=losses) print("Losses", losses) # test the trained model test_model(nlp) # save model to output directory if output_dir is not None: output_dir = Path(output_dir) if not output_dir.exists(): output_dir.mkdir() nlp.to_disk(output_dir) print("Saved model to", output_dir) # test the saved model print("Loading from", output_dir) nlp2 = spacy.load(output_dir) test_model(nlp2) def test_model(nlp): texts = [ "find a hotel with good wifi", "find me the cheapest gym near work", "show me the best hotel in berlin", ] docs = nlp.pipe(texts) for doc in docs: print(doc.text) print([(t.text, t.dep_, t.head.text) for t in doc if t.dep_ != "-"]) if __name__ == "__main__": plac.call(main) # Expected output: # find a hotel with good wifi # [ # ('find', 'ROOT', 'find'), # ('hotel', 'PLACE', 'find'), # ('good', 'QUALITY', 'wifi'), # ('wifi', 'ATTRIBUTE', 'hotel') # ] # find me the cheapest gym near work # [ # ('find', 'ROOT', 'find'), # ('cheapest', 'QUALITY', 'gym'), # ('gym', 'PLACE', 'find'), # ('near', 'ATTRIBUTE', 'gym'), # ('work', 'LOCATION', 'near') # ] # show me the best hotel in berlin # [ # ('show', 'ROOT', 'show'), # ('best', 'QUALITY', 'hotel'), # ('hotel', 'PLACE', 'show'), # ('berlin', 'LOCATION', 'hotel') # ]