#!/usr/bin/env python # coding: utf8 """Train a convolutional neural network text classifier on the IMDB dataset, using the TextCategorizer component. The dataset will be loaded automatically via the package `ml_datasets`. The model is added to spacy.pipeline, and predictions are available via `doc.cats`. For more details, see the documentation: * Training: https://spacy.io/usage/training Compatible with: spaCy v3.0.0+ """ from __future__ import unicode_literals, print_function import plac import random from pathlib import Path from ml_datasets import loaders import spacy from spacy import util from spacy.util import minibatch, compounding from spacy.gold import Example, GoldParse @plac.annotations( config_path=("Path to config file", "positional", None, Path), output_dir=("Optional output directory", "option", "o", Path), n_texts=("Number of texts to train from", "option", "t", int), n_iter=("Number of training iterations", "option", "n", int), init_tok2vec=("Pretrained tok2vec weights", "option", "t2v", Path), dataset=("Dataset to train on (default: imdb)", "option", "d", str), threshold=("Min. number of instances for a given label (default 20)", "option", "m", int) ) def main(config_path, output_dir=None, n_iter=20, n_texts=2000, init_tok2vec=None, dataset="imdb", threshold=20): if not config_path or not config_path.exists(): raise ValueError(f"Config file not found at {config_path}") spacy.util.fix_random_seed() if output_dir is not None: output_dir = Path(output_dir) if not output_dir.exists(): output_dir.mkdir() print(f"Loading nlp model from {config_path}") nlp_config = util.load_config(config_path, create_objects=False)["nlp"] nlp = util.load_model_from_config(nlp_config) # ensure the nlp object was defined with a textcat component if "textcat" not in nlp.pipe_names: raise ValueError(f"The nlp definition in the config does not contain a textcat component") textcat = nlp.get_pipe("textcat") # load the dataset print(f"Loading dataset {dataset} ...") (train_texts, train_cats), (dev_texts, dev_cats) = load_data(dataset=dataset, threshold=threshold, limit=n_texts) print( "Using {} examples ({} training, {} evaluation)".format( n_texts, len(train_texts), len(dev_texts) ) ) train_examples = [] for text, cats in zip(train_texts, train_cats): doc = nlp.make_doc(text) gold = GoldParse(doc, cats=cats) for cat in cats: textcat.add_label(cat) ex = Example.from_gold(gold, doc=doc) train_examples.append(ex) with nlp.select_pipes(enable="textcat"): # only train textcat optimizer = nlp.begin_training() if init_tok2vec is not None: with init_tok2vec.open("rb") as file_: textcat.model.get_ref("tok2vec").from_bytes(file_.read()) print("Training the model...") print("{:^5}\t{:^5}\t{:^5}\t{:^5}".format("LOSS", "P", "R", "F")) batch_sizes = compounding(4.0, 32.0, 1.001) for i in range(n_iter): losses = {} # batch up the examples using spaCy's minibatch random.shuffle(train_examples) batches = minibatch(train_examples, size=batch_sizes) for batch in batches: nlp.update(batch, sgd=optimizer, drop=0.2, losses=losses) with textcat.model.use_params(optimizer.averages): # evaluate on the dev data split off in load_data() scores = evaluate(nlp.tokenizer, textcat, dev_texts, dev_cats) print( "{0:.3f}\t{1:.3f}\t{2:.3f}\t{3:.3f}".format( # print a simple table losses["textcat"], scores["textcat_p"], scores["textcat_r"], scores["textcat_f"], ) ) # test the trained model (only makes sense for sentiment analysis) test_text = "This movie sucked" doc = nlp(test_text) print(test_text, doc.cats) if output_dir is not None: with nlp.use_params(optimizer.averages): nlp.to_disk(output_dir) print("Saved model to", output_dir) # test the saved model print("Loading from", output_dir) nlp2 = spacy.load(output_dir) doc2 = nlp2(test_text) print(test_text, doc2.cats) def load_data(dataset, threshold, limit=0, split=0.8): """Load data from the provided dataset.""" # Partition off part of the train data for evaluation data_loader = loaders.get(dataset) train_data, _ = data_loader(limit=int(limit/split)) random.shuffle(train_data) texts, labels = zip(*train_data) unique_labels = set() for label_set in labels: if isinstance(label_set, int) or isinstance(label_set, str): unique_labels.add(label_set) elif isinstance(label_set, list) or isinstance(label_set, set): unique_labels.update(label_set) unique_labels = sorted(unique_labels) print(f"# of unique_labels: {len(unique_labels)}") count_values_train = dict() for text, annot_list in train_data: if isinstance(annot_list, int) or isinstance(annot_list, str): count_values_train[annot_list] = count_values_train.get(annot_list, 0) + 1 else: for annot in annot_list: count_values_train[annot] = count_values_train.get(annot, 0) + 1 for value, count in sorted(count_values_train.items(), key=lambda item: item[1]): if count < threshold: unique_labels.remove(value) print(f"# of unique_labels after filtering with threshold {threshold}: {len(unique_labels)}") if unique_labels == {0, 1}: cats = [{"POSITIVE": bool(y), "NEGATIVE": not bool(y)} for y in labels] else: cats = [] for y in labels: if isinstance(y, str) or isinstance(y, int): cats.append({str(label): (label == y) for label in unique_labels}) elif isinstance(y, set): cats.append({str(label): (label in y) for label in unique_labels}) else: raise ValueError(f"Unrecognised type of labels: {type(y)}") split = int(len(train_data) * split) return (texts[:split], cats[:split]), (texts[split:], cats[split:]) def evaluate(tokenizer, textcat, texts, cats): docs = (tokenizer(text) for text in texts) tp = 0.0 # True positives fp = 1e-8 # False positives fn = 1e-8 # False negatives tn = 0.0 # True negatives for i, doc in enumerate(textcat.pipe(docs)): gold = cats[i] for label, score in doc.cats.items(): if label not in gold: continue if label == "NEGATIVE": continue if score >= 0.5 and gold[label] >= 0.5: tp += 1.0 elif score >= 0.5 and gold[label] < 0.5: fp += 1.0 elif score < 0.5 and gold[label] < 0.5: tn += 1 elif score < 0.5 and gold[label] >= 0.5: fn += 1 precision = tp / (tp + fp) recall = tp / (tp + fn) if (precision + recall) == 0: f_score = 0.0 else: f_score = 2 * (precision * recall) / (precision + recall) return {"textcat_p": precision, "textcat_r": recall, "textcat_f": f_score} if __name__ == "__main__": plac.call(main)