""" MALT-style dependency parser """ from __future__ import unicode_literals cimport cython from libc.stdint cimport uint32_t, uint64_t import random import os.path from os import path import shutil import json from cymem.cymem cimport Pool, Address from murmurhash.mrmr cimport hash64 from thinc.typedefs cimport weight_t, class_t, feat_t, atom_t from util import Config from thinc.features cimport Extractor from thinc.features cimport Feature from thinc.features cimport count_feats from thinc.learner cimport LinearModel from ..tokens cimport Tokens, TokenC from .arc_eager cimport TransitionSystem, Transition from .arc_eager import OracleError from ._state cimport init_state, State, is_final, get_idx, get_s0, get_s1, get_n0, get_n1 from . import _parse_features from ._parse_features cimport fill_context, CONTEXT_SIZE DEBUG = False def set_debug(val): global DEBUG DEBUG = val cdef unicode print_state(State* s, list words): words = list(words) + ['EOL'] top = words[s.stack[0]] + '_%d' % s.sent[s.stack[0]].head second = words[s.stack[-1]] + '_%d' % s.sent[s.stack[-1]].head third = words[s.stack[-2]] + '_%d' % s.sent[s.stack[-2]].head n0 = words[s.i] n1 = words[s.i + 1] return ' '.join((str(s.stack_len), third, second, top, '|', n0, n1)) def get_templates(name): pf = _parse_features if name == 'zhang': return pf.unigrams, pf.arc_eager else: return pf.unigrams, (pf.unigrams + pf.s0_n0 + pf.s1_n0 + pf.s0_n1 + pf.n0_n1 + \ pf.tree_shape + pf.trigrams) cdef class GreedyParser: def __init__(self, model_dir): assert os.path.exists(model_dir) and os.path.isdir(model_dir) self.cfg = Config.read(model_dir, 'config') self.moves = TransitionSystem(self.cfg.left_labels, self.cfg.right_labels) hasty_templ, full_templ = get_templates(self.cfg.features) self.model = Model(self.moves.n_moves, full_templ, model_dir) def __call__(self, Tokens tokens): cdef: Transition guess uint64_t state_key cdef atom_t[CONTEXT_SIZE] context cdef int n_feats cdef Pool mem = Pool() cdef State* state = init_state(mem, tokens.data, tokens.length) while not is_final(state): fill_context(context, state) scores = self.model.score(context) guess = self.moves.best_valid(scores, state) self.moves.transition(state, &guess) # Messily tell Tokens object the string names of the dependency labels dep_strings = [None] * len(self.moves.label_ids) for label, id_ in self.moves.label_ids.items(): dep_strings[id_] = label tokens._dep_strings = tuple(dep_strings) tokens.is_parsed = True return 0 def train_sent(self, Tokens tokens, list gold_heads, list gold_labels, force_gold=False): cdef: const Feature* feats const weight_t* scores Transition guess Transition gold cdef int n_feats cdef atom_t[CONTEXT_SIZE] context cdef Pool mem = Pool() cdef int* heads_array = mem.alloc(tokens.length, sizeof(int)) cdef int* labels_array = mem.alloc(tokens.length, sizeof(int)) cdef int i for i in range(tokens.length): if gold_heads[i] is None: heads_array[i] = -1 labels_array[i] = -1 else: heads_array[i] = gold_heads[i] labels_array[i] = self.moves.label_ids[gold_labels[i]] py_words = [t.orth_ for t in tokens] py_moves = ['S', 'D', 'L', 'R', 'BS', 'BR'] history = [] #print py_words cdef State* state = init_state(mem, tokens.data, tokens.length) while not is_final(state): fill_context(context, state) scores = self.model.score(context) guess = self.moves.best_valid(scores, state) best = self.moves.best_gold(&guess, scores, state, heads_array, labels_array) history.append((py_moves[best.move], print_state(state, py_words))) self.model.update(context, guess.clas, best.clas, guess.cost) if force_gold: self.moves.transition(state, &best) else: self.moves.transition(state, &guess) cdef int n_corr = 0 for i in range(tokens.length): if gold_heads[i] != -1: n_corr += (i + state.sent[i].head) == gold_heads[i] if force_gold and n_corr != tokens.length: #print py_words #print gold_heads #for move, state_str in history: # print move, state_str #for i in range(tokens.length): # print py_words[i], py_words[i + state.sent[i].head], py_words[gold_heads[i]] raise OracleError return n_corr