import random import numpy.random import pytest from numpy.testing import assert_almost_equal from thinc.api import Config, compounding, fix_random_seed, get_current_ops from wasabi import msg import spacy from spacy import util from spacy.cli.evaluate import print_prf_per_type, print_textcats_auc_per_cat from spacy.lang.en import English from spacy.language import Language from spacy.pipeline import TextCategorizer from spacy.pipeline.textcat import ( single_label_bow_config, single_label_cnn_config, single_label_default_config, ) from spacy.pipeline.textcat_multilabel import ( multi_label_bow_config, multi_label_cnn_config, multi_label_default_config, ) from spacy.pipeline.tok2vec import DEFAULT_TOK2VEC_MODEL from spacy.scorer import Scorer from spacy.tokens import Doc, DocBin from spacy.training import Example from spacy.training.initialize import init_nlp # Ensure that the architecture gets added to the registry. from ..tok2vec import build_lazy_init_tok2vec as _ from ..util import make_tempdir TRAIN_DATA_SINGLE_LABEL = [ ("I'm so happy.", {"cats": {"POSITIVE": 1.0, "NEGATIVE": 0.0}}), ("I'm so angry", {"cats": {"POSITIVE": 0.0, "NEGATIVE": 1.0}}), ] TRAIN_DATA_MULTI_LABEL = [ ("I'm angry and confused", {"cats": {"ANGRY": 1.0, "CONFUSED": 1.0, "HAPPY": 0.0}}), ("I'm confused but happy", {"cats": {"ANGRY": 0.0, "CONFUSED": 1.0, "HAPPY": 1.0}}), ] lazy_init_model_config = """ [model] @architectures = "test.LazyInitTok2Vec.v1" width = 96 """ LAZY_INIT_TOK2VEC_MODEL = Config().from_str(lazy_init_model_config)["model"] def make_get_examples_single_label(nlp): train_examples = [] for t in TRAIN_DATA_SINGLE_LABEL: train_examples.append(Example.from_dict(nlp.make_doc(t[0]), t[1])) def get_examples(): return train_examples return get_examples def make_get_examples_multi_label(nlp): train_examples = [] for t in TRAIN_DATA_MULTI_LABEL: train_examples.append(Example.from_dict(nlp.make_doc(t[0]), t[1])) def get_examples(): return train_examples return get_examples @pytest.mark.issue(3611) def test_issue3611(): """Test whether adding n-grams in the textcat works even when n > token length of some docs""" unique_classes = ["offensive", "inoffensive"] x_train = [ "This is an offensive text", "This is the second offensive text", "inoff", ] y_train = ["offensive", "offensive", "inoffensive"] nlp = spacy.blank("en") # preparing the data train_data = [] for text, train_instance in zip(x_train, y_train): cat_dict = {label: label == train_instance for label in unique_classes} train_data.append(Example.from_dict(nlp.make_doc(text), {"cats": cat_dict})) # add a text categorizer component model = { "@architectures": "spacy.TextCatBOW.v1", "exclusive_classes": True, "ngram_size": 2, "no_output_layer": False, } textcat = nlp.add_pipe("textcat", config={"model": model}, last=True) for label in unique_classes: textcat.add_label(label) # training the network with nlp.select_pipes(enable="textcat"): optimizer = nlp.initialize() for i in range(3): losses = {} batches = util.minibatch(train_data, size=compounding(4.0, 32.0, 1.001)) for batch in batches: nlp.update(examples=batch, sgd=optimizer, drop=0.1, losses=losses) @pytest.mark.issue(4030) def test_issue4030(): """Test whether textcat works fine with empty doc""" unique_classes = ["offensive", "inoffensive"] x_train = [ "This is an offensive text", "This is the second offensive text", "inoff", ] y_train = ["offensive", "offensive", "inoffensive"] nlp = spacy.blank("en") # preparing the data train_data = [] for text, train_instance in zip(x_train, y_train): cat_dict = {label: label == train_instance for label in unique_classes} train_data.append(Example.from_dict(nlp.make_doc(text), {"cats": cat_dict})) # add a text categorizer component model = { "@architectures": "spacy.TextCatBOW.v1", "exclusive_classes": True, "ngram_size": 2, "no_output_layer": False, } textcat = nlp.add_pipe("textcat", config={"model": model}, last=True) for label in unique_classes: textcat.add_label(label) # training the network with nlp.select_pipes(enable="textcat"): optimizer = nlp.initialize() for i in range(3): losses = {} batches = util.minibatch(train_data, size=compounding(4.0, 32.0, 1.001)) for batch in batches: nlp.update(examples=batch, sgd=optimizer, drop=0.1, losses=losses) # processing of an empty doc should result in 0.0 for all categories doc = nlp("") assert doc.cats["offensive"] == 0.0 assert doc.cats["inoffensive"] == 0.0 @pytest.mark.parametrize( "textcat_config", [ single_label_default_config, single_label_bow_config, single_label_cnn_config, multi_label_default_config, multi_label_bow_config, multi_label_cnn_config, ], ) @pytest.mark.issue(5551) def test_issue5551(textcat_config): """Test that after fixing the random seed, the results of the pipeline are truly identical""" component = "textcat" pipe_cfg = Config().from_str(textcat_config) results = [] for i in range(3): fix_random_seed(0) nlp = English() text = "Once hot, form ping-pong-ball-sized balls of the mixture, each weighing roughly 25 g." annots = {"cats": {"Labe1": 1.0, "Label2": 0.0, "Label3": 0.0}} pipe = nlp.add_pipe(component, config=pipe_cfg, last=True) for label in set(annots["cats"]): pipe.add_label(label) # Train nlp.initialize() doc = nlp.make_doc(text) nlp.update([Example.from_dict(doc, annots)]) # Store the result of each iteration result = pipe.model.predict([doc]) results.append(result[0]) # All results should be the same because of the fixed seed assert len(results) == 3 ops = get_current_ops() assert_almost_equal(ops.to_numpy(results[0]), ops.to_numpy(results[1]), decimal=5) assert_almost_equal(ops.to_numpy(results[0]), ops.to_numpy(results[2]), decimal=5) CONFIG_ISSUE_6908 = """ [paths] train = "TRAIN_PLACEHOLDER" raw = null init_tok2vec = null vectors = null [system] seed = 0 gpu_allocator = null [nlp] lang = "en" pipeline = ["textcat"] tokenizer = {"@tokenizers":"spacy.Tokenizer.v1"} disabled = [] before_creation = null after_creation = null after_pipeline_creation = null batch_size = 1000 [components] [components.textcat] factory = "TEXTCAT_PLACEHOLDER" [corpora] [corpora.train] @readers = "spacy.Corpus.v1" path = ${paths:train} [corpora.dev] @readers = "spacy.Corpus.v1" path = ${paths:train} [training] train_corpus = "corpora.train" dev_corpus = "corpora.dev" seed = ${system.seed} gpu_allocator = ${system.gpu_allocator} frozen_components = [] before_to_disk = null [pretraining] [initialize] vectors = ${paths.vectors} init_tok2vec = ${paths.init_tok2vec} vocab_data = null lookups = null before_init = null after_init = null [initialize.components] [initialize.components.textcat] labels = ['label1', 'label2'] [initialize.tokenizer] """ @pytest.mark.parametrize( "component_name", ["textcat", "textcat_multilabel"], ) @pytest.mark.issue(6908) def test_issue6908(component_name): """Test intializing textcat with labels in a list""" def create_data(out_file): nlp = spacy.blank("en") doc = nlp.make_doc("Some text") doc.cats = {"label1": 0, "label2": 1} out_data = DocBin(docs=[doc]).to_bytes() with out_file.open("wb") as file_: file_.write(out_data) with make_tempdir() as tmp_path: train_path = tmp_path / "train.spacy" create_data(train_path) config_str = CONFIG_ISSUE_6908.replace("TEXTCAT_PLACEHOLDER", component_name) config_str = config_str.replace("TRAIN_PLACEHOLDER", train_path.as_posix()) config = util.load_config_from_str(config_str) init_nlp(config) @pytest.mark.issue(7019) def test_issue7019(): scores = {"LABEL_A": 0.39829102, "LABEL_B": 0.938298329382, "LABEL_C": None} print_textcats_auc_per_cat(msg, scores) scores = { "LABEL_A": {"p": 0.3420302, "r": 0.3929020, "f": 0.49823928932}, "LABEL_B": {"p": None, "r": None, "f": None}, } print_prf_per_type(msg, scores, name="foo", type="bar") @pytest.mark.issue(9904) def test_issue9904(): nlp = Language() textcat = nlp.add_pipe("textcat") get_examples = make_get_examples_single_label(nlp) nlp.initialize(get_examples) examples = get_examples() scores = textcat.predict([eg.predicted for eg in examples]) loss = textcat.get_loss(examples, scores)[0] loss_double_bs = textcat.get_loss(examples * 2, scores.repeat(2, axis=0))[0] assert loss == pytest.approx(loss_double_bs) @pytest.mark.skip(reason="Test is flakey when run with others") def test_simple_train(): nlp = Language() textcat = nlp.add_pipe("textcat") textcat.add_label("answer") nlp.initialize() for i in range(5): for text, answer in [ ("aaaa", 1.0), ("bbbb", 0), ("aa", 1.0), ("bbbbbbbbb", 0.0), ("aaaaaa", 1), ]: nlp.update((text, {"cats": {"answer": answer}})) doc = nlp("aaa") assert "answer" in doc.cats assert doc.cats["answer"] >= 0.5 @pytest.mark.skip(reason="Test is flakey when run with others") def test_textcat_learns_multilabel(): random.seed(5) numpy.random.seed(5) docs = [] nlp = Language() letters = ["a", "b", "c"] for w1 in letters: for w2 in letters: cats = {letter: float(w2 == letter) for letter in letters} docs.append((Doc(nlp.vocab, words=["d"] * 3 + [w1, w2] + ["d"] * 3), cats)) random.shuffle(docs) textcat = TextCategorizer(nlp.vocab, width=8) for letter in letters: textcat.add_label(letter) optimizer = textcat.initialize(lambda: []) for i in range(30): losses = {} examples = [Example.from_dict(doc, {"cats": cats}) for doc, cat in docs] textcat.update(examples, sgd=optimizer, losses=losses) random.shuffle(docs) for w1 in letters: for w2 in letters: doc = Doc(nlp.vocab, words=["d"] * 3 + [w1, w2] + ["d"] * 3) truth = {letter: w2 == letter for letter in letters} textcat(doc) for cat, score in doc.cats.items(): if not truth[cat]: assert score < 0.5 else: assert score > 0.5 @pytest.mark.parametrize("name", ["textcat", "textcat_multilabel"]) def test_label_types(name): nlp = Language() textcat = nlp.add_pipe(name) textcat.add_label("answer") with pytest.raises(ValueError): textcat.add_label(9) # textcat requires at least two labels if name == "textcat": with pytest.raises(ValueError): nlp.initialize() else: nlp.initialize() @pytest.mark.parametrize( "name,get_examples", [ ("textcat", make_get_examples_single_label), ("textcat_multilabel", make_get_examples_multi_label), ], ) def test_invalid_label_value(name, get_examples): nlp = Language() textcat = nlp.add_pipe(name) example_getter = get_examples(nlp) def invalid_examples(): # make one example with an invalid score examples = example_getter() ref = examples[0].reference key = list(ref.cats.keys())[0] ref.cats[key] = 2.0 return examples with pytest.raises(ValueError): nlp.initialize(get_examples=invalid_examples) @pytest.mark.parametrize("name", ["textcat", "textcat_multilabel"]) def test_no_label(name): nlp = Language() nlp.add_pipe(name) with pytest.raises(ValueError): nlp.initialize() @pytest.mark.parametrize( "name,get_examples", [ ("textcat", make_get_examples_single_label), ("textcat_multilabel", make_get_examples_multi_label), ], ) def test_implicit_label(name, get_examples): nlp = Language() nlp.add_pipe(name) nlp.initialize(get_examples=get_examples(nlp)) # fmt: off @pytest.mark.slow @pytest.mark.parametrize( "name,textcat_config", [ # BOW V1 ("textcat", {"@architectures": "spacy.TextCatBOW.v1", "exclusive_classes": True, "no_output_layer": False, "ngram_size": 3}), ("textcat", {"@architectures": "spacy.TextCatBOW.v1", "exclusive_classes": True, "no_output_layer": True, "ngram_size": 3}), ("textcat_multilabel", {"@architectures": "spacy.TextCatBOW.v1", "exclusive_classes": False, "no_output_layer": False, "ngram_size": 3}), ("textcat_multilabel", {"@architectures": "spacy.TextCatBOW.v1", "exclusive_classes": False, "no_output_layer": True, "ngram_size": 3}), # ENSEMBLE V1 ("textcat", {"@architectures": "spacy.TextCatEnsemble.v1", "exclusive_classes": False, "pretrained_vectors": None, "width": 64, "embed_size": 2000, "conv_depth": 2, "window_size": 1, "ngram_size": 1, "dropout": None}), ("textcat_multilabel", {"@architectures": "spacy.TextCatEnsemble.v1", "exclusive_classes": False, "pretrained_vectors": None, "width": 64, "embed_size": 2000, "conv_depth": 2, "window_size": 1, "ngram_size": 1, "dropout": None}), # ENSEMBLE V2 ("textcat", {"@architectures": "spacy.TextCatEnsemble.v2", "tok2vec": DEFAULT_TOK2VEC_MODEL, "linear_model": {"@architectures": "spacy.TextCatBOW.v1", "exclusive_classes": True, "no_output_layer": False, "ngram_size": 3}}), ("textcat", {"@architectures": "spacy.TextCatEnsemble.v2", "tok2vec": DEFAULT_TOK2VEC_MODEL, "linear_model": {"@architectures": "spacy.TextCatBOW.v1", "exclusive_classes": True, "no_output_layer": True, "ngram_size": 3}}), ("textcat_multilabel", {"@architectures": "spacy.TextCatEnsemble.v2", "tok2vec": DEFAULT_TOK2VEC_MODEL, "linear_model": {"@architectures": "spacy.TextCatBOW.v1", "exclusive_classes": False, "no_output_layer": False, "ngram_size": 3}}), ("textcat_multilabel", {"@architectures": "spacy.TextCatEnsemble.v2", "tok2vec": DEFAULT_TOK2VEC_MODEL, "linear_model": {"@architectures": "spacy.TextCatBOW.v1", "exclusive_classes": False, "no_output_layer": True, "ngram_size": 3}}), # CNN ("textcat", {"@architectures": "spacy.TextCatCNN.v1", "tok2vec": DEFAULT_TOK2VEC_MODEL, "exclusive_classes": True}), ("textcat_multilabel", {"@architectures": "spacy.TextCatCNN.v1", "tok2vec": DEFAULT_TOK2VEC_MODEL, "exclusive_classes": False}), ], ) # fmt: on def test_no_resize(name, textcat_config): """The old textcat architectures weren't resizable""" nlp = Language() pipe_config = {"model": textcat_config} textcat = nlp.add_pipe(name, config=pipe_config) textcat.add_label("POSITIVE") textcat.add_label("NEGATIVE") nlp.initialize() assert textcat.model.maybe_get_dim("nO") in [2, None] # this throws an error because the textcat can't be resized after initialization with pytest.raises(ValueError): textcat.add_label("NEUTRAL") # fmt: off @pytest.mark.parametrize( "name,textcat_config", [ # BOW V3 ("textcat", {"@architectures": "spacy.TextCatBOW.v3", "exclusive_classes": True, "no_output_layer": False, "ngram_size": 3}), ("textcat", {"@architectures": "spacy.TextCatBOW.v3", "exclusive_classes": True, "no_output_layer": True, "ngram_size": 3}), ("textcat_multilabel", {"@architectures": "spacy.TextCatBOW.v3", "exclusive_classes": False, "no_output_layer": False, "ngram_size": 3}), ("textcat_multilabel", {"@architectures": "spacy.TextCatBOW.v3", "exclusive_classes": False, "no_output_layer": True, "ngram_size": 3}), # CNN ("textcat", {"@architectures": "spacy.TextCatReduce.v1", "tok2vec": DEFAULT_TOK2VEC_MODEL, "exclusive_classes": True, "use_reduce_first": True, "use_reduce_last": True, "use_reduce_max": True, "use_reduce_mean": True}), ("textcat_multilabel", {"@architectures": "spacy.TextCatReduce.v1", "tok2vec": DEFAULT_TOK2VEC_MODEL, "exclusive_classes": False, "use_reduce_first": True, "use_reduce_last": True, "use_reduce_max": True, "use_reduce_mean": True}), ], ) # fmt: on def test_resize(name, textcat_config): """The new textcat architectures are resizable""" nlp = Language() pipe_config = {"model": textcat_config} textcat = nlp.add_pipe(name, config=pipe_config) textcat.add_label("POSITIVE") textcat.add_label("NEGATIVE") assert textcat.model.maybe_get_dim("nO") in [2, None] nlp.initialize() assert textcat.model.maybe_get_dim("nO") in [2, None] textcat.add_label("NEUTRAL") assert textcat.model.maybe_get_dim("nO") in [3, None] # fmt: off @pytest.mark.parametrize( "name,textcat_config", [ # BOW v3 ("textcat", {"@architectures": "spacy.TextCatBOW.v3", "exclusive_classes": True, "no_output_layer": False, "ngram_size": 3}), ("textcat", {"@architectures": "spacy.TextCatBOW.v3", "exclusive_classes": True, "no_output_layer": True, "ngram_size": 3}), ("textcat_multilabel", {"@architectures": "spacy.TextCatBOW.v3", "exclusive_classes": False, "no_output_layer": False, "ngram_size": 3}), ("textcat_multilabel", {"@architectures": "spacy.TextCatBOW.v3", "exclusive_classes": False, "no_output_layer": True, "ngram_size": 3}), # REDUCE ("textcat", {"@architectures": "spacy.TextCatReduce.v1", "tok2vec": DEFAULT_TOK2VEC_MODEL, "exclusive_classes": True, "use_reduce_first": True, "use_reduce_last": True, "use_reduce_max": True, "use_reduce_mean": True}), ("textcat_multilabel", {"@architectures": "spacy.TextCatReduce.v1", "tok2vec": DEFAULT_TOK2VEC_MODEL, "exclusive_classes": False, "use_reduce_first": True, "use_reduce_last": True, "use_reduce_max": True, "use_reduce_mean": True}), ], ) # fmt: on def test_resize_same_results(name, textcat_config): # Ensure that the resized textcat classifiers still produce the same results for old labels fix_random_seed(0) nlp = English() pipe_config = {"model": textcat_config} textcat = nlp.add_pipe(name, config=pipe_config) train_examples = [] for text, annotations in TRAIN_DATA_SINGLE_LABEL: train_examples.append(Example.from_dict(nlp.make_doc(text), annotations)) optimizer = nlp.initialize(get_examples=lambda: train_examples) assert textcat.model.maybe_get_dim("nO") in [2, None] for i in range(5): losses = {} nlp.update(train_examples, sgd=optimizer, losses=losses) # test the trained model before resizing test_text = "I am happy." doc = nlp(test_text) assert len(doc.cats) == 2 pos_pred = doc.cats["POSITIVE"] neg_pred = doc.cats["NEGATIVE"] # test the trained model again after resizing textcat.add_label("NEUTRAL") doc = nlp(test_text) assert len(doc.cats) == 3 assert doc.cats["POSITIVE"] == pos_pred assert doc.cats["NEGATIVE"] == neg_pred assert doc.cats["NEUTRAL"] <= 1 for i in range(5): losses = {} nlp.update(train_examples, sgd=optimizer, losses=losses) # test the trained model again after training further with new label doc = nlp(test_text) assert len(doc.cats) == 3 assert doc.cats["POSITIVE"] != pos_pred assert doc.cats["NEGATIVE"] != neg_pred for cat in doc.cats: assert doc.cats[cat] <= 1 def test_error_with_multi_labels(): nlp = Language() nlp.add_pipe("textcat") train_examples = [] for text, annotations in TRAIN_DATA_MULTI_LABEL: train_examples.append(Example.from_dict(nlp.make_doc(text), annotations)) with pytest.raises(ValueError): nlp.initialize(get_examples=lambda: train_examples) # fmt: off @pytest.mark.parametrize( "name,textcat_config", [ # ENSEMBLE V2 ("textcat_multilabel", {"@architectures": "spacy.TextCatEnsemble.v2", "tok2vec": LAZY_INIT_TOK2VEC_MODEL, "linear_model": {"@architectures": "spacy.TextCatBOW.v3", "exclusive_classes": False, "ngram_size": 1, "no_output_layer": False}}), ("textcat", {"@architectures": "spacy.TextCatEnsemble.v2", "tok2vec": LAZY_INIT_TOK2VEC_MODEL, "linear_model": {"@architectures": "spacy.TextCatBOW.v3", "exclusive_classes": True, "ngram_size": 5, "no_output_layer": False}}), # PARAMETRIC ATTENTION V1 ("textcat", {"@architectures": "spacy.TextCatParametricAttention.v1", "tok2vec": LAZY_INIT_TOK2VEC_MODEL, "exclusive_classes": True}), ("textcat_multilabel", {"@architectures": "spacy.TextCatParametricAttention.v1", "tok2vec": LAZY_INIT_TOK2VEC_MODEL, "exclusive_classes": False}), # REDUCE ("textcat", {"@architectures": "spacy.TextCatReduce.v1", "tok2vec": LAZY_INIT_TOK2VEC_MODEL, "exclusive_classes": True, "use_reduce_first": True, "use_reduce_last": True, "use_reduce_max": True, "use_reduce_mean": True}), ("textcat_multilabel", {"@architectures": "spacy.TextCatReduce.v1", "tok2vec": LAZY_INIT_TOK2VEC_MODEL, "exclusive_classes": False, "use_reduce_first": True, "use_reduce_last": True, "use_reduce_max": True, "use_reduce_mean": True}), ], ) # fmt: on def test_tok2vec_lazy_init(name, textcat_config): # Check that we can properly initialize and use a textcat model using # a lazily-initialized tok2vec. nlp = English() pipe_config = {"model": textcat_config} textcat = nlp.add_pipe(name, config=pipe_config) textcat.add_label("POSITIVE") textcat.add_label("NEGATIVE") nlp.initialize() nlp.pipe(["This is a test."]) @pytest.mark.parametrize( "name,get_examples, train_data", [ ("textcat", make_get_examples_single_label, TRAIN_DATA_SINGLE_LABEL), ("textcat_multilabel", make_get_examples_multi_label, TRAIN_DATA_MULTI_LABEL), ], ) def test_initialize_examples(name, get_examples, train_data): nlp = Language() textcat = nlp.add_pipe(name) for text, annotations in train_data: for label, value in annotations.get("cats").items(): textcat.add_label(label) # you shouldn't really call this more than once, but for testing it should be fine nlp.initialize() nlp.initialize(get_examples=get_examples(nlp)) with pytest.raises(TypeError): nlp.initialize(get_examples=lambda: None) with pytest.raises(TypeError): nlp.initialize(get_examples=get_examples()) def test_overfitting_IO(): # Simple test to try and quickly overfit the single-label textcat component - ensuring the ML models work correctly fix_random_seed(0) nlp = English() textcat = nlp.add_pipe("textcat") train_examples = [] for text, annotations in TRAIN_DATA_SINGLE_LABEL: train_examples.append(Example.from_dict(nlp.make_doc(text), annotations)) optimizer = nlp.initialize(get_examples=lambda: train_examples) assert textcat.model.get_dim("nO") == 2 for i in range(50): losses = {} nlp.update(train_examples, sgd=optimizer, losses=losses) assert losses["textcat"] < 0.01 # test the trained model test_text = "I am happy." doc = nlp(test_text) cats = doc.cats assert cats["POSITIVE"] > 0.9 assert cats["POSITIVE"] + cats["NEGATIVE"] == pytest.approx(1.0, 0.001) # Also test the results are still the same after IO with make_tempdir() as tmp_dir: nlp.to_disk(tmp_dir) nlp2 = util.load_model_from_path(tmp_dir) doc2 = nlp2(test_text) cats2 = doc2.cats assert cats2["POSITIVE"] > 0.9 assert cats2["POSITIVE"] + cats2["NEGATIVE"] == pytest.approx(1.0, 0.001) # Test scoring scores = nlp.evaluate(train_examples) assert scores["cats_micro_f"] == 1.0 assert scores["cats_macro_f"] == 1.0 assert scores["cats_macro_auc"] == 1.0 assert scores["cats_score"] == 1.0 assert "cats_score_desc" in scores # Make sure that running pipe twice, or comparing to call, always amounts to the same predictions texts = ["Just a sentence.", "I like green eggs.", "I am happy.", "I eat ham."] batch_cats_1 = [doc.cats for doc in nlp.pipe(texts)] batch_cats_2 = [doc.cats for doc in nlp.pipe(texts)] no_batch_cats = [doc.cats for doc in [nlp(text) for text in texts]] for cats_1, cats_2 in zip(batch_cats_1, batch_cats_2): for cat in cats_1: assert_almost_equal(cats_1[cat], cats_2[cat], decimal=5) for cats_1, cats_2 in zip(batch_cats_1, no_batch_cats): for cat in cats_1: assert_almost_equal(cats_1[cat], cats_2[cat], decimal=5) def test_overfitting_IO_multi(): # Simple test to try and quickly overfit the multi-label textcat component - ensuring the ML models work correctly fix_random_seed(0) nlp = English() textcat = nlp.add_pipe("textcat_multilabel") train_examples = [] for text, annotations in TRAIN_DATA_MULTI_LABEL: train_examples.append(Example.from_dict(nlp.make_doc(text), annotations)) optimizer = nlp.initialize(get_examples=lambda: train_examples) assert textcat.model.get_dim("nO") == 3 for i in range(100): losses = {} nlp.update(train_examples, sgd=optimizer, losses=losses) assert losses["textcat_multilabel"] < 0.01 # test the trained model test_text = "I am confused but happy." doc = nlp(test_text) cats = doc.cats assert cats["HAPPY"] > 0.9 assert cats["CONFUSED"] > 0.9 # Also test the results are still the same after IO with make_tempdir() as tmp_dir: nlp.to_disk(tmp_dir) nlp2 = util.load_model_from_path(tmp_dir) doc2 = nlp2(test_text) cats2 = doc2.cats assert cats2["HAPPY"] > 0.9 assert cats2["CONFUSED"] > 0.9 # Test scoring scores = nlp.evaluate(train_examples) assert scores["cats_micro_f"] == 1.0 assert scores["cats_macro_f"] == 1.0 assert "cats_score_desc" in scores # Make sure that running pipe twice, or comparing to call, always amounts to the same predictions texts = ["Just a sentence.", "I like green eggs.", "I am happy.", "I eat ham."] batch_deps_1 = [doc.cats for doc in nlp.pipe(texts)] batch_deps_2 = [doc.cats for doc in nlp.pipe(texts)] no_batch_deps = [doc.cats for doc in [nlp(text) for text in texts]] for cats_1, cats_2 in zip(batch_deps_1, batch_deps_2): for cat in cats_1: assert_almost_equal(cats_1[cat], cats_2[cat], decimal=5) for cats_1, cats_2 in zip(batch_deps_1, no_batch_deps): for cat in cats_1: assert_almost_equal(cats_1[cat], cats_2[cat], decimal=5) # fmt: off @pytest.mark.slow @pytest.mark.parametrize( "name,train_data,textcat_config", [ # BOW V1 ("textcat_multilabel", TRAIN_DATA_MULTI_LABEL, {"@architectures": "spacy.TextCatBOW.v1", "exclusive_classes": False, "ngram_size": 1, "no_output_layer": False}), ("textcat", TRAIN_DATA_SINGLE_LABEL, {"@architectures": "spacy.TextCatBOW.v1", "exclusive_classes": True, "ngram_size": 4, "no_output_layer": False}), # ENSEMBLE V1 ("textcat_multilabel", TRAIN_DATA_MULTI_LABEL, {"@architectures": "spacy.TextCatEnsemble.v1", "exclusive_classes": False, "pretrained_vectors": None, "width": 64, "embed_size": 2000, "conv_depth": 2, "window_size": 1, "ngram_size": 1, "dropout": None}), ("textcat", TRAIN_DATA_SINGLE_LABEL, {"@architectures": "spacy.TextCatEnsemble.v1", "exclusive_classes": False, "pretrained_vectors": None, "width": 64, "embed_size": 2000, "conv_depth": 2, "window_size": 1, "ngram_size": 1, "dropout": None}), # CNN V1 ("textcat", TRAIN_DATA_SINGLE_LABEL, {"@architectures": "spacy.TextCatCNN.v1", "tok2vec": DEFAULT_TOK2VEC_MODEL, "exclusive_classes": True}), ("textcat_multilabel", TRAIN_DATA_MULTI_LABEL, {"@architectures": "spacy.TextCatCNN.v1", "tok2vec": DEFAULT_TOK2VEC_MODEL, "exclusive_classes": False}), # BOW V2 ("textcat_multilabel", TRAIN_DATA_MULTI_LABEL, {"@architectures": "spacy.TextCatBOW.v2", "exclusive_classes": False, "ngram_size": 1, "no_output_layer": False}), ("textcat", TRAIN_DATA_SINGLE_LABEL, {"@architectures": "spacy.TextCatBOW.v2", "exclusive_classes": True, "ngram_size": 4, "no_output_layer": False}), ("textcat_multilabel", TRAIN_DATA_MULTI_LABEL, {"@architectures": "spacy.TextCatBOW.v2", "exclusive_classes": False, "ngram_size": 3, "no_output_layer": True}), ("textcat", TRAIN_DATA_SINGLE_LABEL, {"@architectures": "spacy.TextCatBOW.v2", "exclusive_classes": True, "ngram_size": 2, "no_output_layer": True}), # BOW V3 ("textcat_multilabel", TRAIN_DATA_MULTI_LABEL, {"@architectures": "spacy.TextCatBOW.v3", "exclusive_classes": False, "ngram_size": 1, "no_output_layer": False}), ("textcat", TRAIN_DATA_SINGLE_LABEL, {"@architectures": "spacy.TextCatBOW.v3", "exclusive_classes": True, "ngram_size": 4, "no_output_layer": False}), ("textcat_multilabel", TRAIN_DATA_MULTI_LABEL, {"@architectures": "spacy.TextCatBOW.v3", "exclusive_classes": False, "ngram_size": 3, "no_output_layer": True}), ("textcat", TRAIN_DATA_SINGLE_LABEL, {"@architectures": "spacy.TextCatBOW.v3", "exclusive_classes": True, "ngram_size": 2, "no_output_layer": True}), # ENSEMBLE V2 ("textcat_multilabel", TRAIN_DATA_MULTI_LABEL, {"@architectures": "spacy.TextCatEnsemble.v2", "tok2vec": DEFAULT_TOK2VEC_MODEL, "linear_model": {"@architectures": "spacy.TextCatBOW.v3", "exclusive_classes": False, "ngram_size": 1, "no_output_layer": False}}), ("textcat", TRAIN_DATA_SINGLE_LABEL, {"@architectures": "spacy.TextCatEnsemble.v2", "tok2vec": DEFAULT_TOK2VEC_MODEL, "linear_model": {"@architectures": "spacy.TextCatBOW.v3", "exclusive_classes": True, "ngram_size": 5, "no_output_layer": False}}), # CNN V2 (legacy) ("textcat", TRAIN_DATA_SINGLE_LABEL, {"@architectures": "spacy.TextCatCNN.v2", "tok2vec": DEFAULT_TOK2VEC_MODEL, "exclusive_classes": True}), ("textcat_multilabel", TRAIN_DATA_MULTI_LABEL, {"@architectures": "spacy.TextCatCNN.v2", "tok2vec": DEFAULT_TOK2VEC_MODEL, "exclusive_classes": False}), # PARAMETRIC ATTENTION V1 ("textcat", TRAIN_DATA_SINGLE_LABEL, {"@architectures": "spacy.TextCatParametricAttention.v1", "tok2vec": DEFAULT_TOK2VEC_MODEL, "exclusive_classes": True}), ("textcat_multilabel", TRAIN_DATA_MULTI_LABEL, {"@architectures": "spacy.TextCatParametricAttention.v1", "tok2vec": DEFAULT_TOK2VEC_MODEL, "exclusive_classes": False}), # REDUCE V1 ("textcat", TRAIN_DATA_SINGLE_LABEL, {"@architectures": "spacy.TextCatReduce.v1", "tok2vec": DEFAULT_TOK2VEC_MODEL, "exclusive_classes": True, "use_reduce_first": True, "use_reduce_last": True, "use_reduce_max": True, "use_reduce_mean": True}), ("textcat_multilabel", TRAIN_DATA_MULTI_LABEL, {"@architectures": "spacy.TextCatReduce.v1", "tok2vec": DEFAULT_TOK2VEC_MODEL, "exclusive_classes": False, "use_reduce_first": True, "use_reduce_last": True, "use_reduce_max": True, "use_reduce_mean": True}), ], ) # fmt: on def test_textcat_configs(name, train_data, textcat_config): pipe_config = {"model": textcat_config} nlp = English() textcat = nlp.add_pipe(name, config=pipe_config) train_examples = [] for text, annotations in train_data: train_examples.append(Example.from_dict(nlp.make_doc(text), annotations)) for label, value in annotations.get("cats").items(): textcat.add_label(label) optimizer = nlp.initialize() for i in range(5): losses = {} nlp.update(train_examples, sgd=optimizer, losses=losses) def test_positive_class(): nlp = English() textcat = nlp.add_pipe("textcat") get_examples = make_get_examples_single_label(nlp) textcat.initialize(get_examples, labels=["POS", "NEG"], positive_label="POS") assert textcat.labels == ("POS", "NEG") assert textcat.cfg["positive_label"] == "POS" textcat_multilabel = nlp.add_pipe("textcat_multilabel") get_examples = make_get_examples_multi_label(nlp) with pytest.raises(TypeError): textcat_multilabel.initialize( get_examples, labels=["POS", "NEG"], positive_label="POS" ) textcat_multilabel.initialize(get_examples, labels=["FICTION", "DRAMA"]) assert textcat_multilabel.labels == ("FICTION", "DRAMA") assert "positive_label" not in textcat_multilabel.cfg def test_positive_class_not_present(): nlp = English() textcat = nlp.add_pipe("textcat") get_examples = make_get_examples_single_label(nlp) with pytest.raises(ValueError): textcat.initialize(get_examples, labels=["SOME", "THING"], positive_label="POS") def test_positive_class_not_binary(): nlp = English() textcat = nlp.add_pipe("textcat") get_examples = make_get_examples_multi_label(nlp) with pytest.raises(ValueError): textcat.initialize( get_examples, labels=["SOME", "THING", "POS"], positive_label="POS" ) def test_textcat_evaluation(): train_examples = [] nlp = English() ref1 = nlp("one") ref1.cats = {"winter": 1.0, "summer": 1.0, "spring": 1.0, "autumn": 1.0} pred1 = nlp("one") pred1.cats = {"winter": 1.0, "summer": 0.0, "spring": 1.0, "autumn": 1.0} train_examples.append(Example(pred1, ref1)) ref2 = nlp("two") ref2.cats = {"winter": 0.0, "summer": 0.0, "spring": 1.0, "autumn": 1.0} pred2 = nlp("two") pred2.cats = {"winter": 1.0, "summer": 0.0, "spring": 0.0, "autumn": 1.0} train_examples.append(Example(pred2, ref2)) scores = Scorer().score_cats( train_examples, "cats", labels=["winter", "summer", "spring", "autumn"] ) assert scores["cats_f_per_type"]["winter"]["p"] == 1 / 2 assert scores["cats_f_per_type"]["winter"]["r"] == 1 / 1 assert scores["cats_f_per_type"]["summer"]["p"] == 0 assert scores["cats_f_per_type"]["summer"]["r"] == 0 / 1 assert scores["cats_f_per_type"]["spring"]["p"] == 1 / 1 assert scores["cats_f_per_type"]["spring"]["r"] == 1 / 2 assert scores["cats_f_per_type"]["autumn"]["p"] == 2 / 2 assert scores["cats_f_per_type"]["autumn"]["r"] == 2 / 2 assert scores["cats_micro_p"] == 4 / 5 assert scores["cats_micro_r"] == 4 / 6 @pytest.mark.parametrize( "multi_label,spring_p", [(True, 1 / 1), (False, 1 / 2)], ) def test_textcat_eval_missing(multi_label: bool, spring_p: float): """ multi-label: the missing 'spring' in gold_doc_2 doesn't incur a penalty exclusive labels: the missing 'spring' in gold_doc_2 is interpreted as 0.0""" train_examples = [] nlp = English() ref1 = nlp("one") ref1.cats = {"winter": 0.0, "summer": 0.0, "autumn": 0.0, "spring": 1.0} pred1 = nlp("one") pred1.cats = {"winter": 0.0, "summer": 0.0, "autumn": 0.0, "spring": 1.0} train_examples.append(Example(ref1, pred1)) ref2 = nlp("two") # reference 'spring' is missing, pred 'spring' is 1 ref2.cats = {"winter": 0.0, "summer": 0.0, "autumn": 1.0} pred2 = nlp("two") pred2.cats = {"winter": 0.0, "summer": 0.0, "autumn": 0.0, "spring": 1.0} train_examples.append(Example(pred2, ref2)) scores = Scorer().score_cats( train_examples, "cats", labels=["winter", "summer", "spring", "autumn"], multi_label=multi_label, ) assert scores["cats_f_per_type"]["spring"]["p"] == spring_p assert scores["cats_f_per_type"]["spring"]["r"] == 1 / 1 @pytest.mark.parametrize( "multi_label,expected_loss", [(True, 0), (False, 0.125)], ) def test_textcat_loss(multi_label: bool, expected_loss: float): """ multi-label: the missing 'spring' in gold_doc_2 doesn't incur an increase in loss exclusive labels: the missing 'spring' in gold_doc_2 is interpreted as 0.0 and adds to the loss""" train_examples = [] nlp = English() doc1 = nlp("one") cats1 = {"winter": 0.0, "summer": 0.0, "autumn": 0.0, "spring": 1.0} train_examples.append(Example.from_dict(doc1, {"cats": cats1})) doc2 = nlp("two") cats2 = {"winter": 0.0, "summer": 0.0, "autumn": 1.0} train_examples.append(Example.from_dict(doc2, {"cats": cats2})) if multi_label: textcat = nlp.add_pipe("textcat_multilabel") else: textcat = nlp.add_pipe("textcat") assert isinstance(textcat, TextCategorizer) textcat.initialize(lambda: train_examples) scores = textcat.model.ops.asarray( [[0.0, 0.0, 0.0, 1.0], [0.0, 0.0, 1.0, 1.0]], dtype="f" # type: ignore ) loss, d_scores = textcat.get_loss(train_examples, scores) assert loss == expected_loss def test_textcat_multilabel_threshold(): # Ensure the scorer can be called with a different threshold nlp = English() nlp.add_pipe("textcat_multilabel") train_examples = [] for text, annotations in TRAIN_DATA_SINGLE_LABEL: train_examples.append(Example.from_dict(nlp.make_doc(text), annotations)) nlp.initialize(get_examples=lambda: train_examples) # score the model (it's not actually trained but that doesn't matter) scores = nlp.evaluate(train_examples) assert 0 <= scores["cats_score"] <= 1 scores = nlp.evaluate(train_examples, scorer_cfg={"threshold": 1.0}) assert scores["cats_f_per_type"]["POSITIVE"]["r"] == 0 scores = nlp.evaluate(train_examples, scorer_cfg={"threshold": 0}) macro_f = scores["cats_score"] assert scores["cats_f_per_type"]["POSITIVE"]["r"] == 1.0 scores = nlp.evaluate( train_examples, scorer_cfg={"threshold": 0, "positive_label": "POSITIVE"} ) pos_f = scores["cats_score"] assert scores["cats_f_per_type"]["POSITIVE"]["r"] == 1.0 assert pos_f >= macro_f def test_textcat_multi_threshold(): # Ensure the scorer can be called with a different threshold nlp = English() nlp.add_pipe("textcat_multilabel") train_examples = [] for text, annotations in TRAIN_DATA_SINGLE_LABEL: train_examples.append(Example.from_dict(nlp.make_doc(text), annotations)) nlp.initialize(get_examples=lambda: train_examples) # score the model (it's not actually trained but that doesn't matter) scores = nlp.evaluate(train_examples) assert 0 <= scores["cats_score"] <= 1 scores = nlp.evaluate(train_examples, scorer_cfg={"threshold": 1.0}) assert scores["cats_f_per_type"]["POSITIVE"]["r"] == 0 scores = nlp.evaluate(train_examples, scorer_cfg={"threshold": 0}) assert scores["cats_f_per_type"]["POSITIVE"]["r"] == 1.0 @pytest.mark.parametrize( "component_name,scorer", [ ("textcat", "spacy.textcat_scorer.v1"), ("textcat_multilabel", "spacy.textcat_multilabel_scorer.v1"), ], ) def test_textcat_legacy_scorers(component_name, scorer): """Check that legacy scorers are registered and produce the expected score keys.""" nlp = English() nlp.add_pipe(component_name, config={"scorer": {"@scorers": scorer}}) train_examples = [] for text, annotations in TRAIN_DATA_SINGLE_LABEL: train_examples.append(Example.from_dict(nlp.make_doc(text), annotations)) nlp.initialize(get_examples=lambda: train_examples) # score the model (it's not actually trained but that doesn't matter) scores = nlp.evaluate(train_examples) assert 0 <= scores["cats_score"] <= 1