# cython: infer_types=True, profile=True from cymem.cymem cimport Pool from preshed.maps cimport PreshMap from libcpp cimport bool import numpy from .matcher cimport Matcher from ..vocab cimport Vocab from ..tokens.doc cimport Doc from .matcher import unpickle_matcher from ..errors import Errors DELIMITER = "||" INDEX_HEAD = 1 INDEX_RELOP = 0 cdef class DependencyMatcher: """Match dependency parse tree based on pattern rules.""" cdef Pool mem cdef readonly Vocab vocab cdef readonly Matcher token_matcher cdef public object _patterns cdef public object _keys_to_token cdef public object _root cdef public object _entities cdef public object _callbacks cdef public object _nodes cdef public object _tree def __init__(self, vocab): """Create the DependencyMatcher. vocab (Vocab): The vocabulary object, which must be shared with the documents the matcher will operate on. RETURNS (DependencyMatcher): The newly constructed object. """ size = 20 # TODO: make matcher work with validation self.token_matcher = Matcher(vocab, validate=False) self._keys_to_token = {} self._patterns = {} self._root = {} self._nodes = {} self._tree = {} self._entities = {} self._callbacks = {} self.vocab = vocab self.mem = Pool() def __reduce__(self): data = (self.vocab, self._patterns,self._tree, self._callbacks) return (unpickle_matcher, data, None, None) def __len__(self): """Get the number of rules, which are edges, added to the dependency tree matcher. RETURNS (int): The number of rules. """ return len(self._patterns) def __contains__(self, key): """Check whether the matcher contains rules for a match ID. key (str): The match ID. RETURNS (bool): Whether the matcher contains rules for this match ID. """ return self._normalize_key(key) in self._patterns def validateInput(self, pattern, key): idx = 0 visitedNodes = {} for relation in pattern: if "PATTERN" not in relation or "SPEC" not in relation: raise ValueError(Errors.E098.format(key=key)) if idx == 0: if not( "NODE_NAME" in relation["SPEC"] and "NBOR_RELOP" not in relation["SPEC"] and "NBOR_NAME" not in relation["SPEC"] ): raise ValueError(Errors.E099.format(key=key)) visitedNodes[relation["SPEC"]["NODE_NAME"]] = True else: if not( "NODE_NAME" in relation["SPEC"] and "NBOR_RELOP" in relation["SPEC"] and "NBOR_NAME" in relation["SPEC"] ): raise ValueError(Errors.E100.format(key=key)) if ( relation["SPEC"]["NODE_NAME"] in visitedNodes or relation["SPEC"]["NBOR_NAME"] not in visitedNodes ): raise ValueError(Errors.E101.format(key=key)) visitedNodes[relation["SPEC"]["NODE_NAME"]] = True visitedNodes[relation["SPEC"]["NBOR_NAME"]] = True idx = idx + 1 def add(self, key, patterns, *_patterns, on_match=None): if patterns is None or hasattr(patterns, "__call__"): # old API on_match = patterns patterns = _patterns for pattern in patterns: if len(pattern) == 0: raise ValueError(Errors.E012.format(key=key)) self.validateInput(pattern,key) key = self._normalize_key(key) _patterns = [] for pattern in patterns: token_patterns = [] for i in range(len(pattern)): token_pattern = [pattern[i]["PATTERN"]] token_patterns.append(token_pattern) # self.patterns.append(token_patterns) _patterns.append(token_patterns) self._patterns.setdefault(key, []) self._callbacks[key] = on_match self._patterns[key].extend(_patterns) # Add each node pattern of all the input patterns individually to the # matcher. This enables only a single instance of Matcher to be used. # Multiple adds are required to track each node pattern. _keys_to_token_list = [] for i in range(len(_patterns)): _keys_to_token = {} # TODO: Better ways to hash edges in pattern? for j in range(len(_patterns[i])): k = self._normalize_key(unicode(key) + DELIMITER + unicode(i) + DELIMITER + unicode(j)) self.token_matcher.add(k, [_patterns[i][j]]) _keys_to_token[k] = j _keys_to_token_list.append(_keys_to_token) self._keys_to_token.setdefault(key, []) self._keys_to_token[key].extend(_keys_to_token_list) _nodes_list = [] for pattern in patterns: nodes = {} for i in range(len(pattern)): nodes[pattern[i]["SPEC"]["NODE_NAME"]] = i _nodes_list.append(nodes) self._nodes.setdefault(key, []) self._nodes[key].extend(_nodes_list) # Create an object tree to traverse later on. This data structure # enables easy tree pattern match. Doc-Token based tree cannot be # reused since it is memory-heavy and tightly coupled with the Doc. self.retrieve_tree(patterns, _nodes_list,key) def retrieve_tree(self, patterns, _nodes_list, key): _heads_list = [] _root_list = [] for i in range(len(patterns)): heads = {} root = -1 for j in range(len(patterns[i])): token_pattern = patterns[i][j] if ("NBOR_RELOP" not in token_pattern["SPEC"]): heads[j] = ('root', j) root = j else: heads[j] = ( token_pattern["SPEC"]["NBOR_RELOP"], _nodes_list[i][token_pattern["SPEC"]["NBOR_NAME"]] ) _heads_list.append(heads) _root_list.append(root) _tree_list = [] for i in range(len(patterns)): tree = {} for j in range(len(patterns[i])): if(_heads_list[i][j][INDEX_HEAD] == j): continue head = _heads_list[i][j][INDEX_HEAD] if(head not in tree): tree[head] = [] tree[head].append((_heads_list[i][j][INDEX_RELOP], j)) _tree_list.append(tree) self._tree.setdefault(key, []) self._tree[key].extend(_tree_list) self._root.setdefault(key, []) self._root[key].extend(_root_list) def has_key(self, key): """Check whether the matcher has a rule with a given key. key (string or int): The key to check. RETURNS (bool): Whether the matcher has the rule. """ key = self._normalize_key(key) return key in self._patterns def get(self, key, default=None): """Retrieve the pattern stored for a key. key (unicode or int): The key to retrieve. RETURNS (tuple): The rule, as an (on_match, patterns) tuple. """ key = self._normalize_key(key) if key not in self._patterns: return default return (self._callbacks[key], self._patterns[key]) def __call__(self, Doc doc): matched_key_trees = [] matches = self.token_matcher(doc) for key in list(self._patterns.keys()): _patterns_list = self._patterns[key] _keys_to_token_list = self._keys_to_token[key] _root_list = self._root[key] _tree_list = self._tree[key] _nodes_list = self._nodes[key] length = len(_patterns_list) for i in range(length): _keys_to_token = _keys_to_token_list[i] _root = _root_list[i] _tree = _tree_list[i] _nodes = _nodes_list[i] id_to_position = {} for i in range(len(_nodes)): id_to_position[i]=[] # TODO: This could be taken outside to improve running time..? for match_id, start, end in matches: if match_id in _keys_to_token: id_to_position[_keys_to_token[match_id]].append(start) _node_operator_map = self.get_node_operator_map( doc, _tree, id_to_position, _nodes,_root ) length = len(_nodes) matched_trees = [] self.recurse(_tree,id_to_position,_node_operator_map,0,[],matched_trees) matched_key_trees.append((key,matched_trees)) for i, (ent_id, nodes) in enumerate(matched_key_trees): on_match = self._callbacks.get(ent_id) if on_match is not None: on_match(self, doc, i, matched_key_trees) return matched_key_trees def recurse(self,tree,id_to_position,_node_operator_map,int patternLength,visitedNodes,matched_trees): cdef bool isValid; if(patternLength == len(id_to_position.keys())): isValid = True for node in range(patternLength): if(node in tree): for idx, (relop,nbor) in enumerate(tree[node]): computed_nbors = numpy.asarray(_node_operator_map[visitedNodes[node]][relop]) isNbor = False for computed_nbor in computed_nbors: if(computed_nbor.i == visitedNodes[nbor]): isNbor = True isValid = isValid & isNbor if(isValid): matched_trees.append(visitedNodes) return allPatternNodes = numpy.asarray(id_to_position[patternLength]) for patternNode in allPatternNodes: self.recurse(tree,id_to_position,_node_operator_map,patternLength+1,visitedNodes+[patternNode],matched_trees) # Given a node and an edge operator, to return the list of nodes # from the doc that belong to node+operator. This is used to store # all the results beforehand to prevent unnecessary computation while # pattern matching # _node_operator_map[node][operator] = [...] def get_node_operator_map(self,doc,tree,id_to_position,nodes,root): _node_operator_map = {} all_node_indices = nodes.values() all_operators = [] for node in all_node_indices: if node in tree: for child in tree[node]: all_operators.append(child[INDEX_RELOP]) all_operators = list(set(all_operators)) all_nodes = [] for node in all_node_indices: all_nodes = all_nodes + id_to_position[node] all_nodes = list(set(all_nodes)) for node in all_nodes: _node_operator_map[node] = {} for operator in all_operators: _node_operator_map[node][operator] = [] # Used to invoke methods for each operator switcher = { "<": self.dep, ">": self.gov, "<<": self.dep_chain, ">>": self.gov_chain, ".": self.imm_precede, "$+": self.imm_right_sib, "$-": self.imm_left_sib, "$++": self.right_sib, "$--": self.left_sib } for operator in all_operators: for node in all_nodes: _node_operator_map[node][operator] = switcher.get(operator)(doc,node) return _node_operator_map def dep(self, doc, node): return [doc[node].head] def gov(self,doc,node): return list(doc[node].children) def dep_chain(self, doc, node): return list(doc[node].ancestors) def gov_chain(self, doc, node): return list(doc[node].subtree) def imm_precede(self, doc, node): if node > 0: return [doc[node - 1]] return [] def imm_right_sib(self, doc, node): for child in list(doc[node].head.children): if child.i == node - 1: return [doc[child.i]] return [] def imm_left_sib(self, doc, node): for child in list(doc[node].head.children): if child.i == node + 1: return [doc[child.i]] return [] def right_sib(self, doc, node): candidate_children = [] for child in list(doc[node].head.children): if child.i < node: candidate_children.append(doc[child.i]) return candidate_children def left_sib(self, doc, node): candidate_children = [] for child in list(doc[node].head.children): if child.i > node: candidate_children.append(doc[child.i]) return candidate_children def _normalize_key(self, key): if isinstance(key, basestring): return self.vocab.strings.add(key) else: return key