# coding: utf8 from __future__ import unicode_literals import numpy import gzip import srsly from thinc.neural.ops import NumpyOps from ..compat import copy_reg from ..tokens import Doc from ..attrs import SPACY, ORTH class DocPallet(object): """Serialize analyses from a collection of doc objects.""" def __init__(self, attrs=None, store_user_data=False): """Create a DocBox object, to hold serialized annotations. attrs (list): List of attributes to serialize. 'orth' and 'spacy' are always serialized, so they're not required. Defaults to None. """ attrs = attrs or [] # Ensure ORTH is always attrs[0] self.attrs = [attr for attr in attrs if attr != ORTH and attr != SPACY] self.attrs.insert(0, ORTH) self.tokens = [] self.spaces = [] self.user_data = [] self.strings = set() self.store_user_data = store_user_data def add(self, doc): """Add a doc's annotations to the DocBox for serialization.""" array = doc.to_array(self.attrs) if len(array.shape) == 1: array = array.reshape((array.shape[0], 1)) self.tokens.append(array) spaces = doc.to_array(SPACY) assert array.shape[0] == spaces.shape[0] spaces = spaces.reshape((spaces.shape[0], 1)) self.spaces.append(numpy.asarray(spaces, dtype=bool)) self.strings.update(w.text for w in doc) if self.store_user_data: self.user_data.append(srsly.msgpack_dumps(doc.user_data)) def get_docs(self, vocab): """Recover Doc objects from the annotations, using the given vocab.""" for string in self.strings: vocab[string] orth_col = self.attrs.index(ORTH) for i in range(len(self.tokens)): tokens = self.tokens[i] spaces = self.spaces[i] words = [vocab.strings[orth] for orth in tokens[:, orth_col]] doc = Doc(vocab, words=words, spaces=spaces) doc = doc.from_array(self.attrs, tokens) if self.store_user_data: doc.user_data.update(srsly.msgpack_loads(self.user_data[i])) yield doc def merge(self, other): """Extend the annotations of this DocBox with the annotations from another.""" assert self.attrs == other.attrs self.tokens.extend(other.tokens) self.spaces.extend(other.spaces) self.strings.update(other.strings) if self.store_user_data: self.user_data.extend(other.user_data) def to_bytes(self): """Serialize the DocBox's annotations into a byte string.""" for tokens in self.tokens: assert len(tokens.shape) == 2, tokens.shape lengths = [len(tokens) for tokens in self.tokens] msg = { "attrs": self.attrs, "tokens": numpy.vstack(self.tokens).tobytes("C"), "spaces": numpy.vstack(self.spaces).tobytes("C"), "lengths": numpy.asarray(lengths, dtype="int32").tobytes("C"), "strings": list(self.strings), } if self.store_user_data: msg["user_data"] = self.user_data return gzip.compress(srsly.msgpack_dumps(msg)) def from_bytes(self, string): """Deserialize the DocBox's annotations from a byte string.""" msg = srsly.msgpack_loads(gzip.decompress(string)) self.attrs = msg["attrs"] self.strings = set(msg["strings"]) lengths = numpy.fromstring(msg["lengths"], dtype="int32") flat_spaces = numpy.fromstring(msg["spaces"], dtype=bool) flat_tokens = numpy.fromstring(msg["tokens"], dtype="uint64") shape = (flat_tokens.size // len(self.attrs), len(self.attrs)) flat_tokens = flat_tokens.reshape(shape) flat_spaces = flat_spaces.reshape((flat_spaces.size, 1)) self.tokens = NumpyOps().unflatten(flat_tokens, lengths) self.spaces = NumpyOps().unflatten(flat_spaces, lengths) if self.store_user_data and "user_data" in msg: self.user_data = list(msg["user_data"]) for tokens in self.tokens: assert len(tokens.shape) == 2, tokens.shape return self def merge_boxes(boxes): merged = None for byte_string in boxes: if byte_string is not None: box = DocBox(store_user_data=True).from_bytes(byte_string) if merged is None: merged = box else: merged.merge(box) if merged is not None: return merged.to_bytes() else: return b"" def pickle_box(box): return (unpickle_box, (box.to_bytes(),)) def unpickle_box(byte_string): return DocBox().from_bytes(byte_string) copy_reg.pickle(DocBox, pickle_box, unpickle_box) # Compatibility, as we had named it this previously. Binder = DocBox __all__ = ["DocBox"]