# coding: utf8 from __future__ import unicode_literals from collections import OrderedDict from .symbols import POS, NOUN, VERB, ADJ, PUNCT, PROPN from .symbols import VerbForm_inf, VerbForm_none, Number_sing, Degree_pos class Lemmatizer(object): """ The Lemmatizer supports simple part-of-speech-sensitive suffix rules and lookup tables. DOCS: https://spacy.io/api/lemmatizer """ @classmethod def load(cls, path, index=None, exc=None, rules=None, lookup=None): return cls(index, exc, rules, lookup) def __init__(self, index=None, exceptions=None, rules=None, lookup=None): self.index = index self.exc = exceptions self.rules = rules self.lookup_table = lookup if lookup is not None else {} def __call__(self, string, univ_pos, morphology=None): if not self.rules: return [self.lookup_table.get(string, string)] if univ_pos in (NOUN, "NOUN", "noun"): univ_pos = "noun" elif univ_pos in (VERB, "VERB", "verb"): univ_pos = "verb" elif univ_pos in (ADJ, "ADJ", "adj"): univ_pos = "adj" elif univ_pos in (PUNCT, "PUNCT", "punct"): univ_pos = "punct" elif univ_pos in (PROPN, "PROPN"): return [string] else: return [string.lower()] # See Issue #435 for example of where this logic is requied. if self.is_base_form(univ_pos, morphology): return [string.lower()] lemmas = lemmatize( string, self.index.get(univ_pos, {}), self.exc.get(univ_pos, {}), self.rules.get(univ_pos, []), ) return lemmas def is_base_form(self, univ_pos, morphology=None): """ Check whether we're dealing with an uninflected paradigm, so we can avoid lemmatization entirely. """ if morphology is None: morphology = {} if univ_pos == "noun" and morphology.get("Number") == "sing": return True elif univ_pos == "verb" and morphology.get("VerbForm") == "inf": return True # This maps 'VBP' to base form -- probably just need 'IS_BASE' # morphology elif univ_pos == "verb" and ( morphology.get("VerbForm") == "fin" and morphology.get("Tense") == "pres" and morphology.get("Number") is None ): return True elif univ_pos == "adj" and morphology.get("Degree") == "pos": return True elif morphology.get('VerbForm') == 'inf': return True elif morphology.get('VerbForm') == 'none': return True elif morphology.get('VerbForm') == 'inf': return True elif morphology.get('Degree') == 'pos': return True else: return False def noun(self, string, morphology=None): return self(string, "noun", morphology) def verb(self, string, morphology=None): return self(string, "verb", morphology) def adj(self, string, morphology=None): return self(string, "adj", morphology) def punct(self, string, morphology=None): return self(string, "punct", morphology) def lookup(self, string): if string in self.lookup_table: return self.lookup_table[string] return string def lemmatize(string, index, exceptions, rules): orig = string string = string.lower() forms = [] oov_forms = [] for old, new in rules: if string.endswith(old): form = string[: len(string) - len(old)] + new if not form: pass elif form in index or not form.isalpha(): forms.append(form) else: oov_forms.append(form) # Remove duplicates but preserve the ordering of applied "rules" forms = list(OrderedDict.fromkeys(forms)) # Put exceptions at the front of the list, so they get priority. # This is a dodgy heuristic -- but it's the best we can do until we get # frequencies on this. We can at least prune out problematic exceptions, # if they shadow more frequent analyses. for form in exceptions.get(string, []): if form not in forms: forms.insert(0, form) if not forms: forms.extend(oov_forms) if not forms: forms.append(orig) return forms