import pytest from thinc.optimizers import Adam from thinc.backends import NumpyOps from spacy.attrs import NORM from spacy.gold import GoldParse from spacy.vocab import Vocab from spacy.tokens import Doc from spacy.pipeline import DependencyParser @pytest.fixture def vocab(): return Vocab(lex_attr_getters={NORM: lambda s: s}) @pytest.fixture def parser(vocab): parser = DependencyParser(vocab) parser.cfg["token_vector_width"] = 4 parser.cfg["hidden_width"] = 32 # parser.add_label('right') parser.add_label("left") parser.begin_training([], **parser.cfg) sgd = Adam(0.001) for i in range(10): losses = {} doc = Doc(vocab, words=["a", "b", "c", "d"]) gold = GoldParse(doc, heads=[1, 1, 3, 3], deps=["left", "ROOT", "left", "ROOT"]) parser.update((doc, gold), sgd=sgd, losses=losses) return parser def test_no_sentences(parser): doc = Doc(parser.vocab, words=["a", "b", "c", "d"]) doc = parser(doc) assert len(list(doc.sents)) >= 1 def test_sents_1(parser): doc = Doc(parser.vocab, words=["a", "b", "c", "d"]) doc[2].sent_start = True doc = parser(doc) assert len(list(doc.sents)) >= 2 doc = Doc(parser.vocab, words=["a", "b", "c", "d"]) doc[1].sent_start = False doc[2].sent_start = True doc[3].sent_start = False doc = parser(doc) assert len(list(doc.sents)) == 2 def test_sents_1_2(parser): doc = Doc(parser.vocab, words=["a", "b", "c", "d"]) doc[1].sent_start = True doc[2].sent_start = True doc = parser(doc) assert len(list(doc.sents)) >= 3 def test_sents_1_3(parser): doc = Doc(parser.vocab, words=["a", "b", "c", "d"]) doc[1].sent_start = True doc[3].sent_start = True doc = parser(doc) assert len(list(doc.sents)) >= 3 doc = Doc(parser.vocab, words=["a", "b", "c", "d"]) doc[1].sent_start = True doc[2].sent_start = False doc[3].sent_start = True doc = parser(doc) assert len(list(doc.sents)) == 3