//- 💫 DOCS > USAGE > SPACY 101 include ../../_includes/_mixins +h(2, "features") Features +under-construction +aside | If one of spaCy's functionalities #[strong needs a model], it means that | you need to have one our the available | #[+a("/docs/usage/models") statistical models] installed. Models are used | to #[strong predict] linguistic annotations – for example, if a word is | a verb or a noun. +table(["Name", "Description", "Needs model"]) +row +cell #[strong Tokenization] +cell Segmenting text into words, punctuations marks etc. +cell #[+procon("con")] +row +cell #[strong Part-of-speech] (POS) #[strong Tagging] +cell Assigning word types to tokens, like verb or noun. +cell #[+procon("pro")] +row +cell #[strong Dependency Parsing] +cell | Assigning syntactic dependency labels, i.e. the relations between | individual tokens. +cell #[+procon("pro")] +row +cell #[strong Sentence Boundary Detection] (SBD) +cell Finding and segmenting individual sentences. +cell #[+procon("pro")] +row +cell #[strong Named Entity Recongition] (NER) +cell | Labelling named "real-world" objects, like persons, companies or | locations. +cell #[+procon("pro")] +row +cell #[strong Rule-based Matching] +cell | Finding sequences of tokens based on their texts and linguistic | annotations, similar to regular expressions. +cell #[+procon("con")] +row +cell #[strong Similarity] +cell | Comparing words, text spans and documents and how similar they | are to each other. +cell #[+procon("pro")] +row +cell #[strong Training] +cell Updating and improving a statistical model's predictions. +cell #[+procon("neutral")] +row +cell #[strong Serialization] +cell Saving objects to files or byte strings. +cell #[+procon("neutral")] +h(2, "annotations") Linguistic annotations p | spaCy provides a variety of linguistic annotations to give you | #[strong insights into a text's grammatical structure]. This includes the | word types, like the parts of speech, and how the words are related to | each other. For example, if you're analysing text, it makes a huge | difference whether a noun is the subject of a sentence, or the object – | or whether "google" is used as a verb, or refers to the website or | company in a specific context. p | Once you've downloaded and installed a #[+a("/docs/usage/models") model], | you can load it via #[+api("spacy#load") #[code spacy.load()]]. This will | return a #[code Language] object contaning all components and data needed | to process text. We usually call it #[code nlp]. Calling the #[code nlp] | object on a string of text will return a processed #[code Doc]: +code. import spacy nlp = spacy.load('en') doc = nlp(u'Apple is looking at buying U.K. startup for $1 billion') p | Even though a #[code Doc] is processed – e.g. split into individual words | and annotated – it still holds #[strong all information of the original text], | like whitespace characters. This way, you'll never lose any information | when processing text with spaCy. +h(3, "annotations-token") Tokenization include _spacy-101/_tokenization +infobox | To learn more about how spaCy's tokenization rules work in detail, | how to #[strong customise and replace] the default tokenizer and how to | #[strong add language-specific data], see the usage guides on | #[+a("/docs/usage/adding-languages") adding languages] and | #[+a("/docs/usage/customizing-tokenizer") customising the tokenizer]. +h(3, "annotations-pos-deps") Part-of-speech tags and dependencies +tag-model("dependency parse") include _spacy-101/_pos-deps +infobox | To learn more about #[strong part-of-speech tagging] and rule-based | morphology, and how to #[strong navigate and use the parse tree] | effectively, see the usage guides on | #[+a("/docs/usage/pos-tagging") part-of-speech tagging] and | #[+a("/docs/usage/dependency-parse") using the dependency parse]. +h(3, "annotations-ner") Named Entities +tag-model("named entities") include _spacy-101/_named-entities +infobox | To learn more about entity recognition in spaCy, how to | #[strong add your own entities] to a document and how to | #[strong train and update] the entity predictions of a model, see the | usage guides on | #[+a("/docs/usage/entity-recognition") named entity recognition] and | #[+a("/docs/usage/training-ner") training the named entity recognizer]. +h(2, "vectors-similarity") Word vectors and similarity +tag-model("vectors") include _spacy-101/_similarity include _spacy-101/_word-vectors +infobox | To learn more about word vectors, how to #[strong customise them] and | how to load #[strong your own vectors] into spaCy, see the usage | guide on | #[+a("/docs/usage/word-vectors-similarities") using word vectors and semantic similarities]. +h(2, "pipelines") Pipelines include _spacy-101/_pipelines +infobox | To learn more about #[strong how processing pipelines work] in detail, | how to enable and disable their components, and how to | #[strong create your own], see the usage guide on | #[+a("/docs/usage/language-processing-pipeline") language processing pipelines]. +h(2, "vocab") Vocab and lexemes include _spacy-101/_vocab +h(2, "serialization") Serialization include _spacy-101/_serialization +infobox | To learn more about #[strong serialization] and how to | #[strong save and load your own models], see the usage guide on | #[+a("/docs/usage/saving-loading") saving, loading and data serialization]. +h(2, "training") Training include _spacy-101/_training +h(2, "architecture") Architecture +under-construction +image include ../../assets/img/docs/architecture.svg .u-text-right +button("/assets/img/docs/architecture.svg", false, "secondary").u-text-tag View large graphic +table(["Name", "Description"]) +row +cell #[+api("language") #[code Language]] +cell | A text-processing pipeline. Usually you'll load this once per | process as #[code nlp] and pass the instance around your application. +row +cell #[+api("doc") #[code Doc]] +cell A container for accessing linguistic annotations. +row +cell #[+api("span") #[code Span]] +cell A slice from a #[code Doc] object. +row +cell #[+api("token") #[code Token]] +cell | An individual token — i.e. a word, punctuation symbol, whitespace, | etc. +row +cell #[+api("lexeme") #[code Lexeme]] +cell | An entry in the vocabulary. It's a word type with no context, as | opposed to a word token. It therefore has no part-of-speech tag, | dependency parse etc. +row +cell #[+api("vocab") #[code Vocab]] +cell | A lookup table for the vocabulary that allows you to access | #[code Lexeme] objects. +row +cell #[code Morphology] +cell +row +cell #[+api("stringstore") #[code StringStore]] +cell Map strings to and from integer IDs. +row +row +cell #[+api("tokenizer") #[code Tokenizer]] +cell | Segment text, and create #[code Doc] objects with the discovered | segment boundaries. +row +cell #[+api("matcher") #[code Matcher]] +cell | Match sequences of tokens, based on pattern rules, similar to | regular expressions. +h(3, "architecture-pipeline") Pipeline components +table(["Name", "Description"]) +row +cell #[+api("tagger") #[code Tagger]] +cell Annotate part-of-speech tags on #[code Doc] objects. +row +cell #[+api("dependencyparser") #[code DependencyParser]] +cell Annotate syntactic dependencies on #[code Doc] objects. +row +cell #[+api("entityrecognizer") #[code EntityRecognizer]] +cell | Annotate named entities, e.g. persons or products, on #[code Doc] | objects. +h(3, "architecture-other") Other classes +table(["Name", "Description"]) +row +cell #[+api("binder") #[code Binder]] +cell +row +cell #[+api("goldparse") #[code GoldParse]] +cell Collection for training annotations. +row +cell #[+api("goldcorpus") #[code GoldCorpus]] +cell | An annotated corpus, using the JSON file format. Manages | annotations for tagging, dependency parsing and NER.