# cython: infer_types=True, profile=True from typing import Iterator, Iterable import srsly from cymem.cymem cimport Pool from preshed.maps cimport PreshMap from cpython.exc cimport PyErr_SetFromErrno from libc.stdio cimport fopen, fclose, fread, fwrite, feof, fseek from libc.stdint cimport int32_t, int64_t from libcpp.vector cimport vector from pathlib import Path import warnings from .typedefs cimport hash_t from .errors import Errors, Warnings from . import util from .util import SimpleFrozenList, ensure_path cdef class Candidate: """A `Candidate` object refers to a textual mention (`alias`) that may or may not be resolved to a specific `entity` from a Knowledge Base. This will be used as input for the entity linking algorithm which will disambiguate the various candidates to the correct one. Each candidate (alias, entity) pair is assigned to a certain prior probability. DOCS: https://spacy.io/api/kb/#candidate_init """ def __init__(self, KnowledgeBase kb, entity_hash, entity_freq, entity_vector, alias_hash, prior_prob): self.kb = kb self.entity_hash = entity_hash self.entity_freq = entity_freq self.entity_vector = entity_vector self.alias_hash = alias_hash self.prior_prob = prior_prob @property def entity(self): """RETURNS (uint64): hash of the entity's KB ID/name""" return self.entity_hash @property def entity_(self): """RETURNS (str): ID/name of this entity in the KB""" return self.kb.vocab.strings[self.entity_hash] @property def alias(self): """RETURNS (uint64): hash of the alias""" return self.alias_hash @property def alias_(self): """RETURNS (str): ID of the original alias""" return self.kb.vocab.strings[self.alias_hash] @property def entity_freq(self): return self.entity_freq @property def entity_vector(self): return self.entity_vector @property def prior_prob(self): return self.prior_prob def get_candidates(KnowledgeBase kb, span) -> Iterator[Candidate]: """ Return candidate entities for a given span by using the text of the span as the alias and fetching appropriate entries from the index. This particular function is optimized to work with the built-in KB functionality, but any other custom candidate generation method can be used in combination with the KB as well. """ return kb.get_alias_candidates(span.text) cdef class KnowledgeBase: """A `KnowledgeBase` instance stores unique identifiers for entities and their textual aliases, to support entity linking of named entities to real-world concepts. DOCS: https://spacy.io/api/kb """ def __init__(self, Vocab vocab, entity_vector_length): """Create a KnowledgeBase.""" self.mem = Pool() self.entity_vector_length = entity_vector_length self._entry_index = PreshMap() self._alias_index = PreshMap() self.vocab = vocab self._create_empty_vectors(dummy_hash=self.vocab.strings[""]) def initialize_entities(self, int64_t nr_entities): self._entry_index = PreshMap(nr_entities + 1) self._entries = entry_vec(nr_entities + 1) self._vectors_table = float_matrix(nr_entities + 1) def initialize_aliases(self, int64_t nr_aliases): self._alias_index = PreshMap(nr_aliases + 1) self._aliases_table = alias_vec(nr_aliases + 1) @property def entity_vector_length(self): """RETURNS (uint64): length of the entity vectors""" return self.entity_vector_length def __len__(self): return self.get_size_entities() def get_size_entities(self): return len(self._entry_index) def get_entity_strings(self): return [self.vocab.strings[x] for x in self._entry_index] def get_size_aliases(self): return len(self._alias_index) def get_alias_strings(self): return [self.vocab.strings[x] for x in self._alias_index] def add_entity(self, str entity, float freq, vector[float] entity_vector): """ Add an entity to the KB, optionally specifying its log probability based on corpus frequency Return the hash of the entity ID/name at the end. """ cdef hash_t entity_hash = self.vocab.strings.add(entity) # Return if this entity was added before if entity_hash in self._entry_index: warnings.warn(Warnings.W018.format(entity=entity)) return # Raise an error if the provided entity vector is not of the correct length if len(entity_vector) != self.entity_vector_length: raise ValueError(Errors.E141.format(found=len(entity_vector), required=self.entity_vector_length)) vector_index = self.c_add_vector(entity_vector=entity_vector) new_index = self.c_add_entity(entity_hash=entity_hash, freq=freq, vector_index=vector_index, feats_row=-1) # Features table currently not implemented self._entry_index[entity_hash] = new_index return entity_hash cpdef set_entities(self, entity_list, freq_list, vector_list): if len(entity_list) != len(freq_list) or len(entity_list) != len(vector_list): raise ValueError(Errors.E140) nr_entities = len(set(entity_list)) self.initialize_entities(nr_entities) i = 0 cdef KBEntryC entry cdef hash_t entity_hash while i < len(entity_list): # only process this entity if its unique ID hadn't been added before entity_hash = self.vocab.strings.add(entity_list[i]) if entity_hash in self._entry_index: warnings.warn(Warnings.W018.format(entity=entity_list[i])) else: entity_vector = vector_list[i] if len(entity_vector) != self.entity_vector_length: raise ValueError(Errors.E141.format(found=len(entity_vector), required=self.entity_vector_length)) entry.entity_hash = entity_hash entry.freq = freq_list[i] vector_index = self.c_add_vector(entity_vector=vector_list[i]) entry.vector_index = vector_index entry.feats_row = -1 # Features table currently not implemented self._entries[i+1] = entry self._entry_index[entity_hash] = i+1 i += 1 def contains_entity(self, str entity): cdef hash_t entity_hash = self.vocab.strings.add(entity) return entity_hash in self._entry_index def contains_alias(self, str alias): cdef hash_t alias_hash = self.vocab.strings.add(alias) return alias_hash in self._alias_index def add_alias(self, str alias, entities, probabilities): """ For a given alias, add its potential entities and prior probabilies to the KB. Return the alias_hash at the end """ if alias is None or len(alias) == 0: raise ValueError(Errors.E890.format(alias=alias)) previous_alias_nr = self.get_size_aliases() # Throw an error if the length of entities and probabilities are not the same if not len(entities) == len(probabilities): raise ValueError(Errors.E132.format(alias=alias, entities_length=len(entities), probabilities_length=len(probabilities))) # Throw an error if the probabilities sum up to more than 1 (allow for some rounding errors) prob_sum = sum(probabilities) if prob_sum > 1.00001: raise ValueError(Errors.E133.format(alias=alias, sum=prob_sum)) cdef hash_t alias_hash = self.vocab.strings.add(alias) # Check whether this alias was added before if alias_hash in self._alias_index: warnings.warn(Warnings.W017.format(alias=alias)) return cdef vector[int64_t] entry_indices cdef vector[float] probs for entity, prob in zip(entities, probabilities): entity_hash = self.vocab.strings[entity] if not entity_hash in self._entry_index: raise ValueError(Errors.E134.format(entity=entity)) entry_index = self._entry_index.get(entity_hash) entry_indices.push_back(int(entry_index)) probs.push_back(float(prob)) new_index = self.c_add_aliases(alias_hash=alias_hash, entry_indices=entry_indices, probs=probs) self._alias_index[alias_hash] = new_index if previous_alias_nr + 1 != self.get_size_aliases(): raise RuntimeError(Errors.E891.format(alias=alias)) return alias_hash def append_alias(self, str alias, str entity, float prior_prob, ignore_warnings=False): """ For an alias already existing in the KB, extend its potential entities with one more. Throw a warning if either the alias or the entity is unknown, or when the combination is already previously recorded. Throw an error if this entity+prior prob would exceed the sum of 1. For efficiency, it's best to use the method `add_alias` as much as possible instead of this one. """ # Check if the alias exists in the KB cdef hash_t alias_hash = self.vocab.strings[alias] if not alias_hash in self._alias_index: raise ValueError(Errors.E176.format(alias=alias)) # Check if the entity exists in the KB cdef hash_t entity_hash = self.vocab.strings[entity] if not entity_hash in self._entry_index: raise ValueError(Errors.E134.format(entity=entity)) entry_index = self._entry_index.get(entity_hash) # Throw an error if the prior probabilities (including the new one) sum up to more than 1 alias_index = self._alias_index.get(alias_hash) alias_entry = self._aliases_table[alias_index] current_sum = sum([p for p in alias_entry.probs]) new_sum = current_sum + prior_prob if new_sum > 1.00001: raise ValueError(Errors.E133.format(alias=alias, sum=new_sum)) entry_indices = alias_entry.entry_indices is_present = False for i in range(entry_indices.size()): if entry_indices[i] == int(entry_index): is_present = True if is_present: if not ignore_warnings: warnings.warn(Warnings.W024.format(entity=entity, alias=alias)) else: entry_indices.push_back(int(entry_index)) alias_entry.entry_indices = entry_indices probs = alias_entry.probs probs.push_back(float(prior_prob)) alias_entry.probs = probs self._aliases_table[alias_index] = alias_entry def get_alias_candidates(self, str alias) -> Iterator[Candidate]: """ Return candidate entities for an alias. Each candidate defines the entity, the original alias, and the prior probability of that alias resolving to that entity. If the alias is not known in the KB, and empty list is returned. """ cdef hash_t alias_hash = self.vocab.strings[alias] if not alias_hash in self._alias_index: return [] alias_index = self._alias_index.get(alias_hash) alias_entry = self._aliases_table[alias_index] return [Candidate(kb=self, entity_hash=self._entries[entry_index].entity_hash, entity_freq=self._entries[entry_index].freq, entity_vector=self._vectors_table[self._entries[entry_index].vector_index], alias_hash=alias_hash, prior_prob=prior_prob) for (entry_index, prior_prob) in zip(alias_entry.entry_indices, alias_entry.probs) if entry_index != 0] def get_vector(self, str entity): cdef hash_t entity_hash = self.vocab.strings[entity] # Return an empty list if this entity is unknown in this KB if entity_hash not in self._entry_index: return [0] * self.entity_vector_length entry_index = self._entry_index[entity_hash] return self._vectors_table[self._entries[entry_index].vector_index] def get_prior_prob(self, str entity, str alias): """ Return the prior probability of a given alias being linked to a given entity, or return 0.0 when this combination is not known in the knowledge base""" cdef hash_t alias_hash = self.vocab.strings[alias] cdef hash_t entity_hash = self.vocab.strings[entity] if entity_hash not in self._entry_index or alias_hash not in self._alias_index: return 0.0 alias_index = self._alias_index.get(alias_hash) entry_index = self._entry_index[entity_hash] alias_entry = self._aliases_table[alias_index] for (entry_index, prior_prob) in zip(alias_entry.entry_indices, alias_entry.probs): if self._entries[entry_index].entity_hash == entity_hash: return prior_prob return 0.0 def to_bytes(self, **kwargs): """Serialize the current state to a binary string. """ def serialize_header(): header = (self.get_size_entities(), self.get_size_aliases(), self.entity_vector_length) return srsly.json_dumps(header) def serialize_entries(): i = 1 tuples = [] for entry_hash, entry_index in sorted(self._entry_index.items(), key=lambda x: x[1]): entry = self._entries[entry_index] assert entry.entity_hash == entry_hash assert entry_index == i tuples.append((entry.entity_hash, entry.freq, entry.vector_index)) i = i + 1 return srsly.json_dumps(tuples) def serialize_aliases(): i = 1 headers = [] indices_lists = [] probs_lists = [] for alias_hash, alias_index in sorted(self._alias_index.items(), key=lambda x: x[1]): alias = self._aliases_table[alias_index] assert alias_index == i candidate_length = len(alias.entry_indices) headers.append((alias_hash, candidate_length)) indices_lists.append(alias.entry_indices) probs_lists.append(alias.probs) i = i + 1 headers_dump = srsly.json_dumps(headers) indices_dump = srsly.json_dumps(indices_lists) probs_dump = srsly.json_dumps(probs_lists) return srsly.json_dumps((headers_dump, indices_dump, probs_dump)) serializers = { "header": serialize_header, "entity_vectors": lambda: srsly.json_dumps(self._vectors_table), "entries": serialize_entries, "aliases": serialize_aliases, } return util.to_bytes(serializers, []) def from_bytes(self, bytes_data, *, exclude=tuple()): """Load state from a binary string. """ def deserialize_header(b): header = srsly.json_loads(b) nr_entities = header[0] nr_aliases = header[1] entity_vector_length = header[2] self.initialize_entities(nr_entities) self.initialize_aliases(nr_aliases) self.entity_vector_length = entity_vector_length def deserialize_vectors(b): self._vectors_table = srsly.json_loads(b) def deserialize_entries(b): cdef KBEntryC entry tuples = srsly.json_loads(b) i = 1 for (entity_hash, freq, vector_index) in tuples: entry.entity_hash = entity_hash entry.freq = freq entry.vector_index = vector_index entry.feats_row = -1 # Features table currently not implemented self._entries[i] = entry self._entry_index[entity_hash] = i i += 1 def deserialize_aliases(b): cdef AliasC alias i = 1 all_data = srsly.json_loads(b) headers = srsly.json_loads(all_data[0]) indices = srsly.json_loads(all_data[1]) probs = srsly.json_loads(all_data[2]) for header, indices, probs in zip(headers, indices, probs): alias_hash, candidate_length = header alias.entry_indices = indices alias.probs = probs self._aliases_table[i] = alias self._alias_index[alias_hash] = i i += 1 setters = { "header": deserialize_header, "entity_vectors": deserialize_vectors, "entries": deserialize_entries, "aliases": deserialize_aliases, } util.from_bytes(bytes_data, setters, exclude) return self def to_disk(self, path, exclude: Iterable[str] = SimpleFrozenList()): path = ensure_path(path) if not path.exists(): path.mkdir(parents=True) if not path.is_dir(): raise ValueError(Errors.E928.format(loc=path)) serialize = {} serialize["contents"] = lambda p: self.write_contents(p) serialize["strings.json"] = lambda p: self.vocab.strings.to_disk(p) util.to_disk(path, serialize, exclude) def from_disk(self, path, exclude: Iterable[str] = SimpleFrozenList()): path = ensure_path(path) if not path.exists(): raise ValueError(Errors.E929.format(loc=path)) if not path.is_dir(): raise ValueError(Errors.E928.format(loc=path)) deserialize = {} deserialize["contents"] = lambda p: self.read_contents(p) deserialize["strings.json"] = lambda p: self.vocab.strings.from_disk(p) util.from_disk(path, deserialize, exclude) def write_contents(self, file_path): cdef Writer writer = Writer(file_path) writer.write_header(self.get_size_entities(), self.entity_vector_length) # dumping the entity vectors in their original order i = 0 for entity_vector in self._vectors_table: for element in entity_vector: writer.write_vector_element(element) i = i+1 # dumping the entry records in the order in which they are in the _entries vector. # index 0 is a dummy object not stored in the _entry_index and can be ignored. i = 1 for entry_hash, entry_index in sorted(self._entry_index.items(), key=lambda x: x[1]): entry = self._entries[entry_index] assert entry.entity_hash == entry_hash assert entry_index == i writer.write_entry(entry.entity_hash, entry.freq, entry.vector_index) i = i+1 writer.write_alias_length(self.get_size_aliases()) # dumping the aliases in the order in which they are in the _alias_index vector. # index 0 is a dummy object not stored in the _aliases_table and can be ignored. i = 1 for alias_hash, alias_index in sorted(self._alias_index.items(), key=lambda x: x[1]): alias = self._aliases_table[alias_index] assert alias_index == i candidate_length = len(alias.entry_indices) writer.write_alias_header(alias_hash, candidate_length) for j in range(0, candidate_length): writer.write_alias(alias.entry_indices[j], alias.probs[j]) i = i+1 writer.close() def read_contents(self, file_path): cdef hash_t entity_hash cdef hash_t alias_hash cdef int64_t entry_index cdef float freq, prob cdef int32_t vector_index cdef KBEntryC entry cdef AliasC alias cdef float vector_element cdef Reader reader = Reader(file_path) # STEP 0: load header and initialize KB cdef int64_t nr_entities cdef int64_t entity_vector_length reader.read_header(&nr_entities, &entity_vector_length) self.initialize_entities(nr_entities) self.entity_vector_length = entity_vector_length # STEP 1: load entity vectors cdef int i = 0 cdef int j = 0 while i < nr_entities: entity_vector = float_vec(entity_vector_length) j = 0 while j < entity_vector_length: reader.read_vector_element(&vector_element) entity_vector[j] = vector_element j = j+1 self._vectors_table[i] = entity_vector i = i+1 # STEP 2: load entities # we assume that the entity data was written in sequence # index 0 is a dummy object not stored in the _entry_index and can be ignored. i = 1 while i <= nr_entities: reader.read_entry(&entity_hash, &freq, &vector_index) entry.entity_hash = entity_hash entry.freq = freq entry.vector_index = vector_index entry.feats_row = -1 # Features table currently not implemented self._entries[i] = entry self._entry_index[entity_hash] = i i += 1 # check that all entities were read in properly assert nr_entities == self.get_size_entities() # STEP 3: load aliases cdef int64_t nr_aliases reader.read_alias_length(&nr_aliases) self.initialize_aliases(nr_aliases) cdef int64_t nr_candidates cdef vector[int64_t] entry_indices cdef vector[float] probs i = 1 # we assume the alias data was written in sequence # index 0 is a dummy object not stored in the _entry_index and can be ignored. while i <= nr_aliases: reader.read_alias_header(&alias_hash, &nr_candidates) entry_indices = vector[int64_t](nr_candidates) probs = vector[float](nr_candidates) for j in range(0, nr_candidates): reader.read_alias(&entry_index, &prob) entry_indices[j] = entry_index probs[j] = prob alias.entry_indices = entry_indices alias.probs = probs self._aliases_table[i] = alias self._alias_index[alias_hash] = i i += 1 # check that all aliases were read in properly assert nr_aliases == self.get_size_aliases() cdef class Writer: def __init__(self, path): assert isinstance(path, Path) content = bytes(path) cdef bytes bytes_loc = content.encode('utf8') if type(content) == str else content self._fp = fopen(bytes_loc, 'wb') if not self._fp: raise IOError(Errors.E146.format(path=path)) fseek(self._fp, 0, 0) def close(self): cdef size_t status = fclose(self._fp) assert status == 0 cdef int write_header(self, int64_t nr_entries, int64_t entity_vector_length) except -1: self._write(&nr_entries, sizeof(nr_entries)) self._write(&entity_vector_length, sizeof(entity_vector_length)) cdef int write_vector_element(self, float element) except -1: self._write(&element, sizeof(element)) cdef int write_entry(self, hash_t entry_hash, float entry_freq, int32_t vector_index) except -1: self._write(&entry_hash, sizeof(entry_hash)) self._write(&entry_freq, sizeof(entry_freq)) self._write(&vector_index, sizeof(vector_index)) # Features table currently not implemented and not written to file cdef int write_alias_length(self, int64_t alias_length) except -1: self._write(&alias_length, sizeof(alias_length)) cdef int write_alias_header(self, hash_t alias_hash, int64_t candidate_length) except -1: self._write(&alias_hash, sizeof(alias_hash)) self._write(&candidate_length, sizeof(candidate_length)) cdef int write_alias(self, int64_t entry_index, float prob) except -1: self._write(&entry_index, sizeof(entry_index)) self._write(&prob, sizeof(prob)) cdef int _write(self, void* value, size_t size) except -1: status = fwrite(value, size, 1, self._fp) assert status == 1, status cdef class Reader: def __init__(self, path): content = bytes(path) cdef bytes bytes_loc = content.encode('utf8') if type(content) == str else content self._fp = fopen(bytes_loc, 'rb') if not self._fp: PyErr_SetFromErrno(IOError) status = fseek(self._fp, 0, 0) # this can be 0 if there is no header def __dealloc__(self): fclose(self._fp) cdef int read_header(self, int64_t* nr_entries, int64_t* entity_vector_length) except -1: status = self._read(nr_entries, sizeof(int64_t)) if status < 1: if feof(self._fp): return 0 # end of file raise IOError(Errors.E145.format(param="header")) status = self._read(entity_vector_length, sizeof(int64_t)) if status < 1: if feof(self._fp): return 0 # end of file raise IOError(Errors.E145.format(param="vector length")) cdef int read_vector_element(self, float* element) except -1: status = self._read(element, sizeof(float)) if status < 1: if feof(self._fp): return 0 # end of file raise IOError(Errors.E145.format(param="vector element")) cdef int read_entry(self, hash_t* entity_hash, float* freq, int32_t* vector_index) except -1: status = self._read(entity_hash, sizeof(hash_t)) if status < 1: if feof(self._fp): return 0 # end of file raise IOError(Errors.E145.format(param="entity hash")) status = self._read(freq, sizeof(float)) if status < 1: if feof(self._fp): return 0 # end of file raise IOError(Errors.E145.format(param="entity freq")) status = self._read(vector_index, sizeof(int32_t)) if status < 1: if feof(self._fp): return 0 # end of file raise IOError(Errors.E145.format(param="vector index")) if feof(self._fp): return 0 else: return 1 cdef int read_alias_length(self, int64_t* alias_length) except -1: status = self._read(alias_length, sizeof(int64_t)) if status < 1: if feof(self._fp): return 0 # end of file raise IOError(Errors.E145.format(param="alias length")) cdef int read_alias_header(self, hash_t* alias_hash, int64_t* candidate_length) except -1: status = self._read(alias_hash, sizeof(hash_t)) if status < 1: if feof(self._fp): return 0 # end of file raise IOError(Errors.E145.format(param="alias hash")) status = self._read(candidate_length, sizeof(int64_t)) if status < 1: if feof(self._fp): return 0 # end of file raise IOError(Errors.E145.format(param="candidate length")) cdef int read_alias(self, int64_t* entry_index, float* prob) except -1: status = self._read(entry_index, sizeof(int64_t)) if status < 1: if feof(self._fp): return 0 # end of file raise IOError(Errors.E145.format(param="entry index")) status = self._read(prob, sizeof(float)) if status < 1: if feof(self._fp): return 0 # end of file raise IOError(Errors.E145.format(param="prior probability")) cdef int _read(self, void* value, size_t size) except -1: status = fread(value, size, 1, self._fp) return status