mixin example(name)
details
summary
h4= name
block
+example("Load resources and process text")
pre.language-python: code
| from __future__ import unicode_literals, print_function
| from spacy.en import English
| nlp = English()
| doc = nlp('Hello, world. Here are two sentences.')
+example("Get tokens and sentences")
pre.language-python: code
| token = doc[0]
| sentence = doc.sents[0]
| assert token[0] is sentence[0]
+example("Use integer IDs for any string")
pre.language-python: code
| hello_id = nlp.vocab.strings['Hello']
| hello_str = nlp.vocab.strings[hello_id]
|
| assert token.orth == hello_id == 52
| assert token.orth_ == hello_str == 'Hello'
+example("Get and set string views and flags")
pre.language-python: code
| assert token.shape_ == 'Xxxx'
| for lexeme in nlp.vocab:
| if lexeme.is_alpha:
| lexeme.shape_ = 'W'
| elif lexeme.is_digit:
| lexeme.shape_ = 'D'
| elif lexeme.is_punct:
| lexeme.shape_ = 'P'
| else:
| lexeme.shape_ = 'M'
| assert token.shape_ == 'W'
+example("Export to numpy arrays")
pre.language-python: code
| from spacy.en.attrs import ORTH, LIKE_URL, IS_OOV
|
| attr_ids = [ORTH, LIKE_URL, IS_OOV]
| doc_array = doc.to_array(attr_ids)
| assert doc_array.shape == (len(doc), len(attrs)
| assert doc[0].orth == doc_array[0, 0]
| assert doc[1].orth == doc_array[1, 0]
| assert doc[0].like_url == doc_array[0, 1]
| assert doc_array[, 1] == [t.like_url for t in doc]
+example("Word vectors")
pre.language-python: code
| doc = nlp("Apples and oranges are similar. Boots and hippos aren't.")
|
| apples = doc[0]
| oranges = doc[1]
| boots = doc[6]
| hippos = doc[8]
|
| assert apples.similarity(oranges) > boots.similarity(hippos)
+example("Part-of-speech tags")
pre.language-python: code
| from spacy.parts_of_speech import ADV
|
| def is_adverb(token):
| return token.pos == spacy.parts_of_speech.ADV
|
| # These are data-specific, so no constants are provided. You have to look
| # up the IDs from the StringStore.
| NNS = nlp.vocab.strings['NNS']
| NNPS = nlp.vocab.strings['NNPS']
| def is_plural_noun(token):
| return token.tag == NNS or token.tag == NNPS
|
| def print_coarse_pos(token):
| print(token.pos_)
|
| def print_fine_pos(token):
| print(token.tag_)
+example("Syntactic dependencies")
pre.language-python: code
| def dependency_labels_to_root(token):
| '''Walk up the syntactic tree, collecting the arc labels.'''
| dep_labels = []
| while token.root is not token:
| dep_labels.append(token.dep)
| token = token.head
| return dep_labels
+example("Named entities")
pre.language-python: code
| def iter_products(docs):
| for doc in docs:
| for ent in doc.ents:
| if ent.label_ == 'PRODUCT':
| yield ent
|
| def word_is_in_entity(word):
| return word.ent_type != 0
|
| def count_parent_verb_by_person(docs):
| counts = defaultdict(defaultdict(int))
| for doc in docs:
| for ent in doc.ents:
| if ent.label_ == 'PERSON' and ent.root.head.pos == VERB:
| counts[ent.orth_][ent.root.head.lemma_] += 1
| return counts
//+example("Define custom NER rules")
// pre.language-python: code
// | nlp.matcher
+example("Calculate inline mark-up on original string")
pre.language-python: code
| def put_spans_around_tokens(doc, get_classes):
| '''Given some function to compute class names, put each token in a
| span element, with the appropriate classes computed.
|
| All whitespace is preserved, outside of the spans. (Yes, I know HTML
| won't display it. But the point is no information is lost, so you can
| calculate what you need, e.g.
tags,
tags, etc.)
| '''
| output = []
| template = '<span classes="{classes}">{word}</span>{space}'
| for token in doc:
| if token.is_space:
| output.append(token.orth_)
| else:
| output.append(
| template.format(
| classes=' '.join(get_classes(token)),
| word=token.orth_,
| space=token.whitespace_))
| string = ''.join(output)
| string = string.replace('\n', '
')
| string = string.replace('\t', ' '
| return string
+example("Efficient binary serialization")
pre.language-python: code
|
| byte_string = doc.as_bytes()
| open('/tmp/moby_dick.bin', 'wb').write(byte_string)
|
| nlp = spacy.en.English()
| for byte_string in Doc.read(open('/tmp/moby_dick.bin', 'rb')):
| doc = Doc(nlp.vocab)
| doc.from_bytes(byte_string)
p
| See the
a(href="docs.html") docs page
| for
a(href="docs.html#api") API documentation,
a(href="docs.html#tutorials") tutorials,
| and
a(href="docs.html#spec") annotation specs.