# cython: profile=True # cython: cdivision=True # cython: infer_types=True from cpython.ref cimport Py_INCREF from cymem.cymem cimport Pool from collections import defaultdict, Counter from thinc.extra.search cimport Beam import json from .nonproj import is_nonproj_tree from ..typedefs cimport hash_t, attr_t from ..strings cimport hash_string from .stateclass cimport StateClass from ._state cimport StateC from . import nonproj from .transition_system cimport move_cost_func_t, label_cost_func_t from ..gold cimport GoldParse, GoldParseC from ..structs cimport TokenC from ..errors import Errors from ..tokens.doc cimport Doc, set_children_from_heads # Calculate cost as gold/not gold. We don't use scalar value anyway. cdef int BINARY_COSTS = 1 cdef weight_t MIN_SCORE = -90000 cdef attr_t SUBTOK_LABEL = hash_string(u'subtok') DEF NON_MONOTONIC = True DEF USE_BREAK = True # Break transition from here # http://www.aclweb.org/anthology/P13-1074 cdef enum: SHIFT REDUCE LEFT RIGHT BREAK N_MOVES MOVE_NAMES = [None] * N_MOVES MOVE_NAMES[SHIFT] = 'S' MOVE_NAMES[REDUCE] = 'D' MOVE_NAMES[LEFT] = 'L' MOVE_NAMES[RIGHT] = 'R' MOVE_NAMES[BREAK] = 'B' # Helper functions for the arc-eager oracle cdef weight_t push_cost(StateClass stcls, const GoldParseC* gold, int target) nogil: cdef weight_t cost = 0 cdef int i, S_i for i in range(stcls.stack_depth()): S_i = stcls.S(i) if gold.heads[target] == S_i: cost += 1 if gold.heads[S_i] == target and (NON_MONOTONIC or not stcls.has_head(S_i)): cost += 1 if BINARY_COSTS and cost >= 1: return cost cost += Break.is_valid(stcls.c, 0) and Break.move_cost(stcls, gold) == 0 return cost cdef weight_t pop_cost(StateClass stcls, const GoldParseC* gold, int target) nogil: cdef weight_t cost = 0 cdef int i, B_i for i in range(stcls.buffer_length()): B_i = stcls.B(i) cost += gold.heads[B_i] == target cost += gold.heads[target] == B_i if gold.heads[B_i] == B_i or gold.heads[B_i] < target: break if BINARY_COSTS and cost >= 1: return cost if Break.is_valid(stcls.c, 0) and Break.move_cost(stcls, gold) == 0: cost += 1 return cost cdef weight_t arc_cost(StateClass stcls, const GoldParseC* gold, int head, int child) nogil: if arc_is_gold(gold, head, child): return 0 elif stcls.H(child) == gold.heads[child]: return 1 # Head in buffer elif gold.heads[child] >= stcls.B(0) and stcls.B(1) != 0: return 1 else: return 0 cdef bint arc_is_gold(const GoldParseC* gold, int head, int child) nogil: if not gold.has_dep[child]: return True elif gold.heads[child] == head: return True else: return False cdef bint label_is_gold(const GoldParseC* gold, int head, int child, attr_t label) nogil: if not gold.has_dep[child]: return True elif label == 0: return True elif gold.labels[child] == label: return True else: return False cdef bint _is_gold_root(const GoldParseC* gold, int word) nogil: return gold.heads[word] == word or not gold.has_dep[word] cdef class Shift: @staticmethod cdef bint is_valid(const StateC* st, attr_t label) nogil: sent_start = st._sent[st.B_(0).l_edge].sent_start return st.buffer_length() >= 2 and not st.shifted[st.B(0)] and sent_start != 1 @staticmethod cdef int transition(StateC* st, attr_t label) nogil: st.push() st.fast_forward() @staticmethod cdef weight_t cost(StateClass st, const GoldParseC* gold, attr_t label) nogil: return Shift.move_cost(st, gold) + Shift.label_cost(st, gold, label) @staticmethod cdef inline weight_t move_cost(StateClass s, const GoldParseC* gold) nogil: return push_cost(s, gold, s.B(0)) @staticmethod cdef inline weight_t label_cost(StateClass s, const GoldParseC* gold, attr_t label) nogil: return 0 cdef class Reduce: @staticmethod cdef bint is_valid(const StateC* st, attr_t label) nogil: return st.stack_depth() >= 2 @staticmethod cdef int transition(StateC* st, attr_t label) nogil: if st.has_head(st.S(0)): st.pop() else: st.unshift() st.fast_forward() @staticmethod cdef weight_t cost(StateClass s, const GoldParseC* gold, attr_t label) nogil: return Reduce.move_cost(s, gold) + Reduce.label_cost(s, gold, label) @staticmethod cdef inline weight_t move_cost(StateClass st, const GoldParseC* gold) nogil: cost = pop_cost(st, gold, st.S(0)) if not st.has_head(st.S(0)): # Decrement cost for the arcs e save for i in range(1, st.stack_depth()): S_i = st.S(i) if gold.heads[st.S(0)] == S_i: cost -= 1 if gold.heads[S_i] == st.S(0): cost -= 1 if Break.is_valid(st.c, 0) and Break.move_cost(st, gold) == 0: cost -= 1 return cost @staticmethod cdef inline weight_t label_cost(StateClass s, const GoldParseC* gold, attr_t label) nogil: return 0 cdef class LeftArc: @staticmethod cdef bint is_valid(const StateC* st, attr_t label) nogil: if label == SUBTOK_LABEL and st.S(0) != (st.B(0)-1): return 0 sent_start = st._sent[st.B_(0).l_edge].sent_start return sent_start != 1 @staticmethod cdef int transition(StateC* st, attr_t label) nogil: st.add_arc(st.B(0), st.S(0), label) st.pop() st.fast_forward() @staticmethod cdef weight_t cost(StateClass s, const GoldParseC* gold, attr_t label) nogil: return LeftArc.move_cost(s, gold) + LeftArc.label_cost(s, gold, label) @staticmethod cdef inline weight_t move_cost(StateClass s, const GoldParseC* gold) nogil: cdef weight_t cost = 0 if arc_is_gold(gold, s.B(0), s.S(0)): # Have a negative cost if we 'recover' from the wrong dependency return 0 if not s.has_head(s.S(0)) else -1 else: # Account for deps we might lose between S0 and stack if not s.has_head(s.S(0)): for i in range(1, s.stack_depth()): cost += gold.heads[s.S(i)] == s.S(0) cost += gold.heads[s.S(0)] == s.S(i) return cost + pop_cost(s, gold, s.S(0)) + arc_cost(s, gold, s.B(0), s.S(0)) @staticmethod cdef inline weight_t label_cost(StateClass s, const GoldParseC* gold, attr_t label) nogil: return arc_is_gold(gold, s.B(0), s.S(0)) and not label_is_gold(gold, s.B(0), s.S(0), label) cdef class RightArc: @staticmethod cdef bint is_valid(const StateC* st, attr_t label) nogil: # If there's (perhaps partial) parse pre-set, don't allow cycle. if label == SUBTOK_LABEL and st.S(0) != (st.B(0)-1): return 0 sent_start = st._sent[st.B_(0).l_edge].sent_start return sent_start != 1 and st.H(st.S(0)) != st.B(0) @staticmethod cdef int transition(StateC* st, attr_t label) nogil: st.add_arc(st.S(0), st.B(0), label) st.push() st.fast_forward() @staticmethod cdef inline weight_t cost(StateClass s, const GoldParseC* gold, attr_t label) nogil: return RightArc.move_cost(s, gold) + RightArc.label_cost(s, gold, label) @staticmethod cdef inline weight_t move_cost(StateClass s, const GoldParseC* gold) nogil: if arc_is_gold(gold, s.S(0), s.B(0)): return 0 elif s.c.shifted[s.B(0)]: return push_cost(s, gold, s.B(0)) else: return push_cost(s, gold, s.B(0)) + arc_cost(s, gold, s.S(0), s.B(0)) @staticmethod cdef weight_t label_cost(StateClass s, const GoldParseC* gold, attr_t label) nogil: return arc_is_gold(gold, s.S(0), s.B(0)) and not label_is_gold(gold, s.S(0), s.B(0), label) cdef class Break: @staticmethod cdef bint is_valid(const StateC* st, attr_t label) nogil: cdef int i if not USE_BREAK: return False elif st.at_break(): return False elif st.stack_depth() < 1: return False elif st.B_(0).l_edge < 0: return False elif st._sent[st.B_(0).l_edge].sent_start < 0: return False else: return True @staticmethod cdef int transition(StateC* st, attr_t label) nogil: st.set_break(st.B_(0).l_edge) st.fast_forward() @staticmethod cdef weight_t cost(StateClass s, const GoldParseC* gold, attr_t label) nogil: return Break.move_cost(s, gold) + Break.label_cost(s, gold, label) @staticmethod cdef inline weight_t move_cost(StateClass s, const GoldParseC* gold) nogil: cdef weight_t cost = 0 cdef int i, j, S_i, B_i for i in range(s.stack_depth()): S_i = s.S(i) for j in range(s.buffer_length()): B_i = s.B(j) cost += gold.heads[S_i] == B_i cost += gold.heads[B_i] == S_i if cost != 0: return cost # Check for sentence boundary --- if it's here, we can't have any deps # between stack and buffer, so rest of action is irrelevant. s0_root = _get_root(s.S(0), gold) b0_root = _get_root(s.B(0), gold) if s0_root != b0_root or s0_root == -1 or b0_root == -1: return cost else: return cost + 1 @staticmethod cdef inline weight_t label_cost(StateClass s, const GoldParseC* gold, attr_t label) nogil: return 0 cdef int _get_root(int word, const GoldParseC* gold) nogil: while gold.heads[word] != word and gold.has_dep[word] and word >= 0: word = gold.heads[word] if not gold.has_dep[word]: return -1 else: return word cdef void* _init_state(Pool mem, int length, void* tokens) except NULL: st = new StateC(tokens, length) for i in range(st.length): if st._sent[i].dep == 0: st._sent[i].l_edge = i st._sent[i].r_edge = i st._sent[i].head = 0 st._sent[i].dep = 0 st._sent[i].l_kids = 0 st._sent[i].r_kids = 0 st.fast_forward() return st cdef int _del_state(Pool mem, void* state, void* x) except -1: cdef StateC* st = state del st cdef class ArcEager(TransitionSystem): def __init__(self, *args, **kwargs): TransitionSystem.__init__(self, *args, **kwargs) self.init_beam_state = _init_state self.del_beam_state = _del_state @classmethod def get_actions(cls, **kwargs): min_freq = kwargs.get('min_freq', None) actions = defaultdict(lambda: Counter()) actions[SHIFT][''] = 1 actions[REDUCE][''] = 1 for label in kwargs.get('left_labels', []): actions[LEFT][label] = 1 actions[SHIFT][label] = 1 for label in kwargs.get('right_labels', []): actions[RIGHT][label] = 1 actions[REDUCE][label] = 1 for example in kwargs.get('gold_parses', []): heads, labels = nonproj.projectivize(example.token_annotation.heads, example.token_annotation.deps) for child, head, label in zip(example.token_annotation.ids, heads, labels): if label.upper() == 'ROOT' : label = 'ROOT' if head == child: actions[BREAK][label] += 1 elif head < child: actions[RIGHT][label] += 1 actions[REDUCE][''] += 1 elif head > child: actions[LEFT][label] += 1 actions[SHIFT][''] += 1 if min_freq is not None: for action, label_freqs in actions.items(): for label, freq in list(label_freqs.items()): if freq < min_freq: label_freqs.pop(label) # Ensure these actions are present actions[BREAK].setdefault('ROOT', 0) if kwargs.get("learn_tokens") is True: actions[RIGHT].setdefault('subtok', 0) actions[LEFT].setdefault('subtok', 0) # Used for backoff actions[RIGHT].setdefault('dep', 0) actions[LEFT].setdefault('dep', 0) return actions @property def action_types(self): return (SHIFT, REDUCE, LEFT, RIGHT, BREAK) def get_cost(self, StateClass state, GoldParse gold, action): cdef Transition t = self.lookup_transition(action) if not t.is_valid(state.c, t.label): return 9000 else: return t.get_cost(state, &gold.c, t.label) def transition(self, StateClass state, action): cdef Transition t = self.lookup_transition(action) t.do(state.c, t.label) return state def is_gold_parse(self, StateClass state, GoldParse gold): predicted = set() truth = set() for i in range(gold.length): if gold.cand_to_gold[i] is None: continue if state.safe_get(i).dep: predicted.add((i, state.H(i), self.strings[state.safe_get(i).dep])) else: predicted.add((i, state.H(i), 'ROOT')) id_ = gold.orig.ids[gold.cand_to_gold[i]] head = gold.orig.heads[gold.cand_to_gold[i]] dep = gold.orig.deps[gold.cand_to_gold[i]] truth.add((id_, head, dep)) return truth == predicted def has_gold(self, GoldParse gold, start=0, end=None): end = end or len(gold.heads) if all([tag is None for tag in gold.heads[start:end]]): return False else: return True def preprocess_gold(self, GoldParse gold): if not self.has_gold(gold): return None # Figure out whether we're using subtok use_subtok = False for action, labels in self.labels.items(): if SUBTOK_LABEL in labels: use_subtok = True break for i, (head, dep) in enumerate(zip(gold.heads, gold.labels)): # Missing values if head is None or dep is None: gold.c.heads[i] = i gold.c.has_dep[i] = False elif dep == SUBTOK_LABEL and not use_subtok: # If we're not doing the joint tokenization and parsing, # regard these subtok labels as missing gold.c.heads[i] = i gold.c.labels[i] = 0 gold.c.has_dep[i] = False else: if head > i: action = LEFT elif head < i: action = RIGHT else: action = BREAK if dep not in self.labels[action]: if action == BREAK: dep = 'ROOT' elif nonproj.is_decorated(dep): backoff = nonproj.decompose(dep)[0] if backoff in self.labels[action]: dep = backoff else: dep = 'dep' else: dep = 'dep' gold.c.has_dep[i] = True if dep.upper() == 'ROOT': dep = 'ROOT' gold.c.heads[i] = head gold.c.labels[i] = self.strings.add(dep) return gold def get_beam_parses(self, Beam beam): parses = [] probs = beam.probs for i in range(beam.size): state = beam.at(i) if state.is_final(): self.finalize_state(state) prob = probs[i] parse = [] for j in range(state.length): head = state.H(j) label = self.strings[state._sent[j].dep] parse.append((head, j, label)) parses.append((prob, parse)) return parses cdef Transition lookup_transition(self, object name_or_id) except *: if isinstance(name_or_id, int): return self.c[name_or_id] name = name_or_id if '-' in name: move_str, label_str = name.split('-', 1) label = self.strings[label_str] else: move_str = name label = 0 move = MOVE_NAMES.index(move_str) for i in range(self.n_moves): if self.c[i].move == move and self.c[i].label == label: return self.c[i] return Transition(clas=0, move=MISSING, label=0) def move_name(self, int move, attr_t label): label_str = self.strings[label] if label_str: return MOVE_NAMES[move] + '-' + label_str else: return MOVE_NAMES[move] def class_name(self, int i): return self.move_name(self.c[i].move, self.c[i].label) cdef Transition init_transition(self, int clas, int move, attr_t label) except *: # TODO: Apparent Cython bug here when we try to use the Transition() # constructor with the function pointers cdef Transition t t.score = 0 t.clas = clas t.move = move t.label = label if move == SHIFT: t.is_valid = Shift.is_valid t.do = Shift.transition t.get_cost = Shift.cost elif move == REDUCE: t.is_valid = Reduce.is_valid t.do = Reduce.transition t.get_cost = Reduce.cost elif move == LEFT: t.is_valid = LeftArc.is_valid t.do = LeftArc.transition t.get_cost = LeftArc.cost elif move == RIGHT: t.is_valid = RightArc.is_valid t.do = RightArc.transition t.get_cost = RightArc.cost elif move == BREAK: t.is_valid = Break.is_valid t.do = Break.transition t.get_cost = Break.cost else: raise ValueError(Errors.E019.format(action=move, src='arc_eager')) return t cdef int initialize_state(self, StateC* st) nogil: for i in range(st.length): if st._sent[i].dep == 0: st._sent[i].l_edge = i st._sent[i].r_edge = i st._sent[i].head = 0 st._sent[i].dep = 0 st._sent[i].l_kids = 0 st._sent[i].r_kids = 0 st.fast_forward() cdef int finalize_state(self, StateC* st) nogil: cdef int i for i in range(st.length): if st._sent[i].head == 0: st._sent[i].dep = self.root_label def finalize_doc(self, Doc doc): doc.is_parsed = True set_children_from_heads(doc.c, doc.length) cdef int set_valid(self, int* output, const StateC* st) nogil: cdef bint[N_MOVES] is_valid is_valid[SHIFT] = Shift.is_valid(st, 0) is_valid[REDUCE] = Reduce.is_valid(st, 0) is_valid[LEFT] = LeftArc.is_valid(st, 0) is_valid[RIGHT] = RightArc.is_valid(st, 0) is_valid[BREAK] = Break.is_valid(st, 0) cdef int i for i in range(self.n_moves): if self.c[i].label == SUBTOK_LABEL: output[i] = self.c[i].is_valid(st, self.c[i].label) else: output[i] = is_valid[self.c[i].move] cdef int set_costs(self, int* is_valid, weight_t* costs, StateClass stcls, GoldParse gold) except -1: cdef int i, move cdef attr_t label cdef label_cost_func_t[N_MOVES] label_cost_funcs cdef move_cost_func_t[N_MOVES] move_cost_funcs cdef weight_t[N_MOVES] move_costs for i in range(N_MOVES): move_costs[i] = 9000 move_cost_funcs[SHIFT] = Shift.move_cost move_cost_funcs[REDUCE] = Reduce.move_cost move_cost_funcs[LEFT] = LeftArc.move_cost move_cost_funcs[RIGHT] = RightArc.move_cost move_cost_funcs[BREAK] = Break.move_cost label_cost_funcs[SHIFT] = Shift.label_cost label_cost_funcs[REDUCE] = Reduce.label_cost label_cost_funcs[LEFT] = LeftArc.label_cost label_cost_funcs[RIGHT] = RightArc.label_cost label_cost_funcs[BREAK] = Break.label_cost cdef attr_t* labels = gold.c.labels cdef int* heads = gold.c.heads n_gold = 0 for i in range(self.n_moves): if self.c[i].is_valid(stcls.c, self.c[i].label): is_valid[i] = True move = self.c[i].move label = self.c[i].label if move_costs[move] == 9000: move_costs[move] = move_cost_funcs[move](stcls, &gold.c) costs[i] = move_costs[move] + label_cost_funcs[move](stcls, &gold.c, label) n_gold += costs[i] <= 0 else: is_valid[i] = False costs[i] = 9000 if n_gold < 1: # Check projectivity --- leading cause if is_nonproj_tree(gold.heads): raise ValueError(Errors.E020) else: failure_state = stcls.print_state(gold.words) raise ValueError(Errors.E021.format(n_actions=self.n_moves, state=failure_state)) def get_beam_annot(self, Beam beam): length = (beam.at(0)).length heads = [{} for _ in range(length)] deps = [{} for _ in range(length)] probs = beam.probs for i in range(beam.size): state = beam.at(i) self.finalize_state(state) if state.is_final(): prob = probs[i] for j in range(state.length): head = j + state._sent[j].head dep = state._sent[j].dep heads[j].setdefault(head, 0.0) heads[j][head] += prob deps[j].setdefault(dep, 0.0) deps[j][dep] += prob return heads, deps