# cython: infer_types=True """ MALT-style dependency parser """ from __future__ import unicode_literals cimport cython cimport cython.parallel from cpython.ref cimport PyObject, Py_INCREF, Py_XDECREF from cpython.exc cimport PyErr_CheckSignals from libc.stdint cimport uint32_t, uint64_t from libc.string cimport memset, memcpy from libc.stdlib cimport malloc, calloc, free import random import os.path from os import path import shutil import json import sys from cymem.cymem cimport Pool, Address from murmurhash.mrmr cimport hash64 from thinc.typedefs cimport weight_t, class_t, feat_t, atom_t, hash_t from thinc.linear.avgtron cimport AveragedPerceptron from thinc.linalg cimport VecVec from thinc.structs cimport SparseArrayC from preshed.maps cimport MapStruct from preshed.maps cimport map_get from thinc.structs cimport FeatureC from util import Config from ..structs cimport TokenC from ..tokens.doc cimport Doc from ..strings cimport StringStore from .transition_system import OracleError from .transition_system cimport TransitionSystem, Transition from ..gold cimport GoldParse from . import _parse_features from ._parse_features cimport CONTEXT_SIZE from ._parse_features cimport fill_context from .stateclass cimport StateClass from ._state cimport StateC DEBUG = False def set_debug(val): global DEBUG DEBUG = val def get_templates(name): pf = _parse_features if name == 'ner': return pf.ner elif name == 'debug': return pf.unigrams elif name.startswith('embed'): return (pf.words, pf.tags, pf.labels) else: return (pf.unigrams + pf.s0_n0 + pf.s1_n0 + pf.s1_s0 + pf.s0_n1 + pf.n0_n1 + \ pf.tree_shape + pf.trigrams) def ParserFactory(transition_system): return lambda strings, dir_: Parser(strings, dir_, transition_system) cdef class ParserModel(AveragedPerceptron): cdef void set_featuresC(self, ExampleC* eg, const StateC* state) nogil: fill_context(eg.atoms, state) eg.nr_feat = self.extracter.set_features(eg.features, eg.atoms) cdef class Parser: def __init__(self, StringStore strings, transition_system, ParserModel model): self.moves = transition_system self.model = model @classmethod def from_dir(cls, model_dir, strings, transition_system): if not os.path.exists(model_dir): print >> sys.stderr, "Warning: No model found at", model_dir elif not os.path.isdir(model_dir): print >> sys.stderr, "Warning: model path:", model_dir, "is not a directory" cfg = Config.read(model_dir, 'config') moves = transition_system(strings, cfg.labels) templates = get_templates(cfg.features) model = ParserModel(templates) if path.exists(path.join(model_dir, 'model')): model.load(path.join(model_dir, 'model')) return cls(strings, moves, model) @classmethod def load(cls, pkg_or_str_or_file, vocab): # TODO raise NotImplementedError( "This should be here, but isn't yet =/. Use Parser.from_dir") def __reduce__(self): return (Parser, (self.moves.strings, self.moves, self.model), None, None) def __call__(self, Doc tokens): cdef int nr_class = self.moves.n_moves cdef int nr_feat = self.model.nr_feat with nogil: self.parseC(tokens.c, tokens.length, nr_feat, nr_class) tokens.is_parsed = True # Check for KeyboardInterrupt etc. Untested PyErr_CheckSignals() def pipe(self, stream, int batch_size=1000, int n_threads=2): cdef Pool mem = Pool() cdef TokenC** doc_ptr = mem.alloc(batch_size, sizeof(TokenC*)) cdef int* lengths = mem.alloc(batch_size, sizeof(int)) cdef Doc doc cdef int i cdef int nr_class = self.moves.n_moves cdef int nr_feat = self.model.nr_feat queue = [] for doc in stream: doc_ptr[len(queue)] = doc.c lengths[len(queue)] = doc.length queue.append(doc) if len(queue) == batch_size: for i in cython.parallel.prange(batch_size, nogil=True, num_threads=n_threads): self.parseC(doc_ptr[i], lengths[i], nr_feat, nr_class) PyErr_CheckSignals() for doc in queue: doc.is_parsed = True yield doc queue = [] batch_size = len(queue) for i in range(batch_size): self.parseC(doc_ptr[i], lengths[i], nr_feat, nr_class) for doc in queue: doc.is_parsed = True yield doc PyErr_CheckSignals() cdef void parseC(self, TokenC* tokens, int length, int nr_feat, int nr_class) nogil: cdef ExampleC eg eg.nr_feat = nr_feat eg.nr_atom = CONTEXT_SIZE eg.nr_class = nr_class eg.features = calloc(sizeof(FeatureC), nr_feat) eg.atoms = calloc(sizeof(atom_t), CONTEXT_SIZE) eg.scores = calloc(sizeof(weight_t), nr_class) eg.is_valid = calloc(sizeof(int), nr_class) state = new StateC(tokens, length) self.moves.initialize_state(state) cdef int i while not state.is_final(): self.model.set_featuresC(&eg, state) self.moves.set_valid(eg.is_valid, state) self.model.set_scoresC(eg.scores, eg.features, eg.nr_feat) guess = VecVec.arg_max_if_true(eg.scores, eg.is_valid, eg.nr_class) action = self.moves.c[guess] if not eg.is_valid[guess]: with gil: move_name = self.moves.move_name(action.move, action.label) raise ValueError("Illegal action: %s" % move_name) action.do(state, action.label) memset(eg.scores, 0, sizeof(eg.scores[0]) * eg.nr_class) for i in range(eg.nr_class): eg.is_valid[i] = 1 self.moves.finalize_state(state) for i in range(length): tokens[i] = state._sent[i] del state free(eg.features) free(eg.atoms) free(eg.scores) free(eg.is_valid) def train(self, Doc tokens, GoldParse gold): self.moves.preprocess_gold(gold) cdef StateClass stcls = StateClass.init(tokens.c, tokens.length) self.moves.initialize_state(stcls.c) cdef Pool mem = Pool() cdef Example eg = Example( nr_class=self.moves.n_moves, nr_atom=CONTEXT_SIZE, nr_feat=self.model.nr_feat) cdef weight_t loss = 0 cdef Transition action while not stcls.is_final(): self.model.set_featuresC(&eg.c, stcls.c) self.moves.set_costs(eg.c.is_valid, eg.c.costs, stcls, gold) self.model.set_scoresC(eg.c.scores, eg.c.features, eg.c.nr_feat) self.model.updateC(&eg.c) guess = VecVec.arg_max_if_true(eg.c.scores, eg.c.is_valid, eg.c.nr_class) action = self.moves.c[eg.guess] action.do(stcls.c, action.label) loss += eg.costs[eg.guess] eg.fill_scores(0, eg.nr_class) eg.fill_costs(0, eg.nr_class) eg.fill_is_valid(0, eg.nr_class) return loss def step_through(self, Doc doc): return StepwiseState(self, doc) def add_label(self, label): for action in self.moves.action_types: self.moves.add_action(action, label) cdef class StepwiseState: cdef readonly StateClass stcls cdef readonly Example eg cdef readonly Doc doc cdef readonly Parser parser def __init__(self, Parser parser, Doc doc): self.parser = parser self.doc = doc self.stcls = StateClass.init(doc.c, doc.length) self.parser.moves.initialize_state(self.stcls.c) self.eg = Example( nr_class=self.parser.moves.n_moves, nr_atom=CONTEXT_SIZE, nr_feat=self.parser.model.nr_feat) def __enter__(self): return self def __exit__(self, type, value, traceback): self.finish() @property def is_final(self): return self.stcls.is_final() @property def stack(self): return self.stcls.stack @property def queue(self): return self.stcls.queue @property def heads(self): return [self.stcls.H(i) for i in range(self.stcls.length)] @property def deps(self): return [self.doc.vocab.strings[self.stcls.c._sent[i].dep] for i in range(self.stcls.length)] def predict(self): self.eg.reset() self.parser.model.set_featuresC(&self.eg.c, self.stcls.c) self.parser.moves.set_valid(self.eg.c.is_valid, self.stcls.c) self.parser.model.set_scoresC(self.eg.c.scores, self.eg.c.features, self.eg.c.nr_feat) cdef Transition action = self.parser.moves.c[self.eg.guess] return self.parser.moves.move_name(action.move, action.label) def transition(self, action_name): moves = {'S': 0, 'D': 1, 'L': 2, 'R': 3} if action_name == '_': action_name = self.predict() action = self.parser.moves.lookup_transition(action_name) elif action_name == 'L' or action_name == 'R': self.predict() move = moves[action_name] clas = _arg_max_clas(self.eg.c.scores, move, self.parser.moves.c, self.eg.c.nr_class) action = self.parser.moves.c[clas] else: action = self.parser.moves.lookup_transition(action_name) action.do(self.stcls.c, action.label) def finish(self): if self.stcls.is_final(): self.parser.moves.finalize_state(self.stcls.c) self.doc.set_parse(self.stcls.c._sent) cdef int _arg_max_clas(const weight_t* scores, int move, const Transition* actions, int nr_class) except -1: cdef weight_t score = 0 cdef int mode = -1 cdef int i for i in range(nr_class): if actions[i].move == move and (mode == -1 or scores[i] >= score): mode = i score = scores[i] return mode