from typing import Callable import random import itertools import copy from functools import partial from ..util import registry @registry.augmenters("spacy.dont_augment.v1") def create_null_augmenter(): return dont_augment @registry.augmenters("spacy.orth_variants.v1") def create_orth_variants_augmenter(level: float, lower: float) -> Callable: """Create a data augmentation callback that uses orth-variant replacement. The callback can be added to a corpus or other data iterator during training. """ return partial(orth_variants_augmenter, level=level, lower=lower) def dont_augment(nlp, example): yield example def orth_variants_augmenter(nlp, example, *, level: float = 0.0, lower: float = 0.0): if random.random() >= level: yield example else: raw_text = example.text orig_dict = example.to_dict() if not orig_dict["token_annotation"]: yield example else: variant_text, variant_token_annot = make_orth_variants( nlp, raw_text, orig_dict["token_annotation"], lower=raw_text is not None and random.random() < lower, ) doc = nlp.make_doc(variant_text) orig_dict["token_annotation"] = variant_token_annot yield example.from_dict(doc, orig_dict) def make_orth_variants(nlp, raw, token_dict, *, lower: bool = False): orig_token_dict = copy.deepcopy(token_dict) orth_variants = nlp.vocab.lookups.get_table("orth_variants", {}) ndsv = orth_variants.get("single", []) ndpv = orth_variants.get("paired", []) words = token_dict.get("words", []) tags = token_dict.get("tags", []) # keep unmodified if words or tags are not defined if words and tags: if lower: words = [w.lower() for w in words] # single variants punct_choices = [random.choice(x["variants"]) for x in ndsv] for word_idx in range(len(words)): for punct_idx in range(len(ndsv)): if ( tags[word_idx] in ndsv[punct_idx]["tags"] and words[word_idx] in ndsv[punct_idx]["variants"] ): words[word_idx] = punct_choices[punct_idx] # paired variants punct_choices = [random.choice(x["variants"]) for x in ndpv] for word_idx in range(len(words)): for punct_idx in range(len(ndpv)): if tags[word_idx] in ndpv[punct_idx]["tags"] and words[ word_idx ] in itertools.chain.from_iterable(ndpv[punct_idx]["variants"]): # backup option: random left vs. right from pair pair_idx = random.choice([0, 1]) # best option: rely on paired POS tags like `` / '' if len(ndpv[punct_idx]["tags"]) == 2: pair_idx = ndpv[punct_idx]["tags"].index(tags[word_idx]) # next best option: rely on position in variants # (may not be unambiguous, so order of variants matters) else: for pair in ndpv[punct_idx]["variants"]: if words[word_idx] in pair: pair_idx = pair.index(words[word_idx]) words[word_idx] = punct_choices[punct_idx][pair_idx] token_dict["words"] = words token_dict["tags"] = tags # modify raw if raw is not None: variants = [] for single_variants in ndsv: variants.extend(single_variants["variants"]) for paired_variants in ndpv: variants.extend( list(itertools.chain.from_iterable(paired_variants["variants"])) ) # store variants in reverse length order to be able to prioritize # longer matches (e.g., "---" before "--") variants = sorted(variants, key=lambda x: len(x)) variants.reverse() variant_raw = "" raw_idx = 0 # add initial whitespace while raw_idx < len(raw) and raw[raw_idx].isspace(): variant_raw += raw[raw_idx] raw_idx += 1 for word in words: match_found = False # skip whitespace words if word.isspace(): match_found = True # add identical word elif word not in variants and raw[raw_idx:].startswith(word): variant_raw += word raw_idx += len(word) match_found = True # add variant word else: for variant in variants: if not match_found and raw[raw_idx:].startswith(variant): raw_idx += len(variant) variant_raw += word match_found = True # something went wrong, abort # (add a warning message?) if not match_found: return raw, orig_token_dict # add following whitespace while raw_idx < len(raw) and raw[raw_idx].isspace(): variant_raw += raw[raw_idx] raw_idx += 1 raw = variant_raw return raw, token_dict