"""Thinc layer to do simpler transition-based parsing, NER, etc.""" from typing import Dict, Optional import numpy from thinc.api import Model from thinc.types import Padded, Floats3d def BILUO() -> Model[Padded, Padded]: return Model( "biluo", forward, init=init, dims={"nO": None}, attrs={"get_num_actions": get_num_actions}, ) def init(model, X: Optional[Padded] = None, Y: Optional[Padded] = None): if X is not None and Y is not None: if X.data.shape != Y.data.shape: # TODO: Fix error raise ValueError("Mismatched shapes (TODO: Fix message)") model.set_dim("nO", X.data.shape[2]) elif X is not None: model.set_dim("nO", X.data.shape[2]) elif Y is not None: model.set_dim("nO", Y.data.shape[2]) elif model.get_dim("nO") is None: raise ValueError("Dimension unset for BILUO: nO") def forward(model: Model[Padded, Padded], Xp: Padded, is_train: bool): n_labels = (model.get_dim("nO") - 1) // 4 n_tokens, n_docs, n_actions = Xp.data.shape # At each timestep, we make a validity mask of shape (n_docs, n_actions) # to indicate which actions are valid next for each sequence. To construct # the mask, we have a state of shape (2, n_actions) and a validity table of # shape (2, n_actions+1, n_actions). The first dimension of the state indicates # whether it's the last token, the second dimension indicates the previous # action, plus a special 'null action' for the first entry. valid_transitions = model.ops.asarray(_get_transition_table(n_labels)) prev_actions = model.ops.alloc1i(n_docs) # Initialize as though prev action was O prev_actions.fill(n_actions - 1) Y = model.ops.alloc3f(*Xp.data.shape) masks = model.ops.alloc3f(*Y.shape) max_value = Xp.data.max() for t in range(Xp.data.shape[0]): is_last = (Xp.lengths < (t + 2)).astype("i") masks[t] = valid_transitions[is_last, prev_actions] # Don't train the out-of-bounds sequences. masks[t, Xp.size_at_t[t] :] = 0 # Valid actions get 0*10e8, invalid get large negative value Y[t] = Xp.data[t] + ((masks[t] - 1) * max_value * 10) prev_actions = Y[t].argmax(axis=-1) def backprop_biluo(dY: Padded) -> Padded: dY.data *= masks return dY return Padded(Y, Xp.size_at_t, Xp.lengths, Xp.indices), backprop_biluo def get_num_actions(n_labels: int) -> int: # One BEGIN action per label # One IN action per label # One LAST action per label # One UNIT action per label # One OUT action return n_labels + n_labels + n_labels + n_labels + 1 def _get_transition_table( n_labels: int, *, _cache: Dict[int, Floats3d] = {} ) -> Floats3d: n_actions = get_num_actions(n_labels) if n_actions in _cache: return _cache[n_actions] table = numpy.zeros((2, n_actions, n_actions), dtype="f") B_start, B_end = (0, n_labels) I_start, I_end = (B_end, B_end + n_labels) L_start, L_end = (I_end, I_end + n_labels) U_start, U_end = (L_end, L_end + n_labels) # Using ranges allows us to set specific cells, which is necessary to express # that only actions of the same label are valid continuations. B_range = numpy.arange(B_start, B_end) I_range = numpy.arange(I_start, I_end) L_range = numpy.arange(L_start, L_end) O_action = U_end # If this is the last token and the previous action was B or I, only L # of that label is valid table[1, B_range, L_range] = 1 table[1, I_range, L_range] = 1 # If this isn't the last token and the previous action was B or I, only I or # L of that label are valid. table[0, B_range, I_range] = 1 table[0, B_range, L_range] = 1 table[0, I_range, I_range] = 1 table[0, I_range, L_range] = 1 # If this isn't the last token and the previous was L, U or O, B is valid table[0, L_start:, :B_end] = 1 # Regardless of whether this is the last token, if the previous action was # {L, U, O}, U and O are valid. table[:, L_start:, U_start:] = 1 _cache[n_actions] = table return table