from __future__ import unicode_literals import pytest @pytest.mark.xfail def test_example_war_and_peace(nlp): # from spacy.en import English from spacy._doc_examples import download_war_and_peace unprocessed_unicode = download_war_and_peace() # nlp = English() # TODO: ImportError: No module named _doc_examples doc = nlp(unprocessed_unicode) def test_main_entry_point(nlp): # from spacy.en import English # nlp = English() doc = nlp('Some text.') # Applies tagger, parser, entity doc = nlp('Some text.', parse=False) # Applies tagger and entity, not parser doc = nlp('Some text.', entity=False) # Applies tagger and parser, not entity doc = nlp('Some text.', tag=False) # Does not apply tagger, entity or parser doc = nlp('') # Zero-length tokens, not an error # doc = nlp(b'Some text') <-- Error: need unicode doc = nlp(b'Some text'.decode('utf8')) # Encode to unicode first. @pytest.mark.models def test_sentence_spans(nlp): # from spacy.en import English # nlp = English() doc = nlp("This is a sentence. Here's another...") assert [s.root.orth_ for s in doc.sents] == ["is", "'s"] @pytest.mark.models def test_entity_spans(nlp): # from spacy.en import English # nlp = English() tokens = nlp('Mr. Best flew to New York on Saturday morning.') ents = list(tokens.ents) assert ents[0].label == 346 assert ents[0].label_ == 'PERSON' assert ents[0].orth_ == 'Best' assert ents[0].string == ents[0].string @pytest.mark.models def test_noun_chunk_spans(nlp): # from spacy.en import English # nlp = English() doc = nlp('The sentence in this example has three noun chunks.') for chunk in doc.noun_chunks: print(chunk.label, chunk.orth_, '<--', chunk.root.head.orth_) # NP The sentence <-- has # NP this example <-- in # NP three noun chunks <-- has @pytest.mark.models def test_count_by(nlp): # from spacy.en import English, attrs # nlp = English() import numpy from spacy import attrs tokens = nlp('apple apple orange banana') assert tokens.count_by(attrs.ORTH) == {3699: 2, 3750: 1, 5965: 1} assert repr(tokens.to_array([attrs.ORTH])) == repr(numpy.array([[2529], [2529], [4117], [6650]], dtype=numpy.int32)) @pytest.mark.models def test_read_bytes(nlp): from spacy.tokens.doc import Doc loc = '/tmp/test_serialize.bin' with open(loc, 'wb') as file_: file_.write(nlp(u'This is a document.').to_bytes()) file_.write(nlp(u'This is another.').to_bytes()) docs = [] with open(loc, 'rb') as file_: for byte_string in Doc.read_bytes(file_): docs.append(Doc(nlp.vocab).from_bytes(byte_string)) assert len(docs) == 2 def test_token_span(doc): span = doc[4:6] token = span[0] assert token.i == 4 @pytest.mark.models def test_example_i_like_new_york1(nlp): toks = nlp('I like New York in Autumn.') @pytest.fixture def toks(nlp): return nlp('I like New York in Autumn.') def test_example_i_like_new_york2(toks): i, like, new, york, in_, autumn, dot = range(len(toks)) @pytest.fixture def tok(toks, tok): i, like, new, york, in_, autumn, dot = range(len(toks)) return locals()[tok] @pytest.fixture def new(toks): return tok(toks, "new") @pytest.fixture def york(toks): return tok(toks, "york") @pytest.fixture def autumn(toks): return tok(toks, "autumn") @pytest.fixture def dot(toks): return tok(toks, "dot") @pytest.mark.models def test_example_i_like_new_york3(toks, new, york): assert toks[new].head.orth_ == 'York' assert toks[york].head.orth_ == 'like' @pytest.mark.models def test_example_i_like_new_york4(toks, new, york): new_york = toks[new:york+1] assert new_york.root.orth_ == 'York' @pytest.mark.models def test_example_i_like_new_york5(toks, autumn, dot): assert toks[autumn].head.orth_ == 'in' assert toks[dot].head.orth_ == 'like' autumn_dot = toks[autumn:] assert autumn_dot.root.orth_ == 'Autumn' @pytest.mark.models def test_navigating_the_parse_tree_lefts(doc): # TODO: where does the span object come from? span = doc[:2] lefts = [span.doc[i] for i in range(0, span.start) if span.doc[i].head in span] @pytest.mark.models def test_navigating_the_parse_tree_rights(doc): span = doc[:2] rights = [span.doc[i] for i in range(span.end, len(span.doc)) if span.doc[i].head in span] def test_string_store(doc): string_store = doc.vocab.strings for i, string in enumerate(string_store): assert i == string_store[string]