For languages without provided models and with lemmatizer rules in
`spacy-lookups-data`, make the rule-based lemmatizer the default:
Bengali, Persian, Norwegian, Swedish
* Update stop_words.py
Hebrew STOP WORDS
* Update stop_words.py
* contributor
* contributor
* add some common domain extentions
support human number 1K/1M....
* support human number 1K/1M....
* hebrew number tokenize
1K/1M implement in EN
* test human tokenize fix
* test
* heb like num
revert human number change
* heb like num
* Create lex_attrs.py
Hello,
I am missing a CZECH language in SpaCy. So I would like to help to push it a little. This file is base on others lex_attrs.py files just with translation to Czech.
* Update __init__.py
Updated for use with new Czech Lex_attrs file
* Update stop_words.py
* Create test_text.py
* add like_num testing for czech
Co-authored-by: holubvl3 <47881982+holubvl3@users.noreply.github.com>
Co-authored-by: holubvl3 <vilemrousi@gmail.com>
Co-authored-by: Vladimír Holubec <vholubec@arcdata.cz>
* Add Lemmatizer and simplify related components
* Add `Lemmatizer` pipe with `lookup` and `rule` modes using the
`Lookups` tables.
* Reduce `Tagger` to a simple tagger that sets `Token.tag` (no pos or lemma)
* Reduce `Morphology` to only keep track of morph tags (no tag map, lemmatizer,
or morph rules)
* Remove lemmatizer from `Vocab`
* Adjust many many tests
Differences:
* No default lookup lemmas
* No special treatment of TAG in `from_array` and similar required
* Easier to modify labels in a `Tagger`
* No extra strings added from morphology / tag map
* Fix test
* Initial fix for Lemmatizer config/serialization
* Adjust init test to be more generic
* Adjust init test to force empty Lookups
* Add simple cache to rule-based lemmatizer
* Convert language-specific lemmatizers
Convert language-specific lemmatizers to component lemmatizers. Remove
previous lemmatizer class.
* Fix French and Polish lemmatizers
* Remove outdated UPOS conversions
* Update Russian lemmatizer init in tests
* Add minimal init/run tests for custom lemmatizers
* Add option to overwrite existing lemmas
* Update mode setting, lookup loading, and caching
* Make `mode` an immutable property
* Only enforce strict `load_lookups` for known supported modes
* Move caching into individual `_lemmatize` methods
* Implement strict when lang is not found in lookups
* Fix tables/lookups in make_lemmatizer
* Reallow provided lookups and allow for stricter checks
* Add lookups asset to all Lemmatizer pipe tests
* Rename lookups in lemmatizer init test
* Clean up merge
* Refactor lookup table loading
* Add helper from `load_lemmatizer_lookups` that loads required and
optional lookups tables based on settings provided by a config.
Additional slight refactor of lookups:
* Add `Lookups.set_table` to set a table from a provided `Table`
* Reorder class definitions to be able to specify type as `Table`
* Move registry assets into test methods
* Refactor lookups tables config
Use class methods within `Lemmatizer` to provide the config for
particular modes and to load the lookups from a config.
* Add pipe and score to lemmatizer
* Simplify Tagger.score
* Add missing import
* Clean up imports and auto-format
* Remove unused kwarg
* Tidy up and auto-format
* Update docstrings for Lemmatizer
Update docstrings for Lemmatizer.
Additionally modify `is_base_form` API to take `Token` instead of
individual features.
* Update docstrings
* Remove tag map values from Tagger.add_label
* Update API docs
* Fix relative link in Lemmatizer API docs
* Update POS tests to reflect current behavior (it is not entirely clear
whether the AUX/VERB mapping is indeed the desired behavior?)
* Switch to `from_config` initialization in subtoken test
* Update with WIP
* Update with WIP
* Update with pipeline serialization
* Update types and pipe factories
* Add deep merge, tidy up and add tests
* Fix pipe creation from config
* Don't validate default configs on load
* Update spacy/language.py
Co-authored-by: Ines Montani <ines@ines.io>
* Adjust factory/component meta error
* Clean up factory args and remove defaults
* Add test for failing empty dict defaults
* Update pipeline handling and methods
* provide KB as registry function instead of as object
* small change in test to make functionality more clear
* update example script for EL configuration
* Fix typo
* Simplify test
* Simplify test
* splitting pipes.pyx into separate files
* moving default configs to each component file
* fix batch_size type
* removing default values from component constructors where possible (TODO: test 4725)
* skip instead of xfail
* Add test for config -> nlp with multiple instances
* pipeline.pipes -> pipeline.pipe
* Tidy up, document, remove kwargs
* small cleanup/generalization for Tok2VecListener
* use DEFAULT_UPSTREAM field
* revert to avoid circular imports
* Fix tests
* Replace deprecated arg
* Make model dirs require config
* fix pickling of keyword-only arguments in constructor
* WIP: clean up and integrate full config
* Add helper to handle function args more reliably
Now also includes keyword-only args
* Fix config composition and serialization
* Improve config debugging and add visual diff
* Remove unused defaults and fix type
* Remove pipeline and factories from meta
* Update spacy/default_config.cfg
Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
* Update spacy/default_config.cfg
* small UX edits
* avoid printing stack trace for debug CLI commands
* Add support for language-specific factories
* specify the section of the config which holds the model to debug
* WIP: add Language.from_config
* Update with language data refactor WIP
* Auto-format
* Add backwards-compat handling for Language.factories
* Update morphologizer.pyx
* Fix morphologizer
* Update and simplify lemmatizers
* Fix Japanese tests
* Port over tagger changes
* Fix Chinese and tests
* Update to latest Thinc
* WIP: xfail first Russian lemmatizer test
* Fix component-specific overrides
* fix nO for output layers in debug_model
* Fix default value
* Fix tests and don't pass objects in config
* Fix deep merging
* Fix lemma lookup data registry
Only load the lookups if an entry is available in the registry (and if spacy-lookups-data is installed)
* Add types
* Add Vocab.from_config
* Fix typo
* Fix tests
* Make config copying more elegant
* Fix pipe analysis
* Fix lemmatizers and is_base_form
* WIP: move language defaults to config
* Fix morphology type
* Fix vocab
* Remove comment
* Update to latest Thinc
* Add morph rules to config
* Tidy up
* Remove set_morphology option from tagger factory
* Hack use_gpu
* Move [pipeline] to top-level block and make [nlp.pipeline] list
Allows separating component blocks from component order – otherwise, ordering the config would mean a changed component order, which is bad. Also allows initial config to define more components and not use all of them
* Fix use_gpu and resume in CLI
* Auto-format
* Remove resume from config
* Fix formatting and error
* [pipeline] -> [components]
* Fix types
* Fix tagger test: requires set_morphology?
Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
Co-authored-by: svlandeg <sofie.vanlandeghem@gmail.com>
Co-authored-by: Matthew Honnibal <honnibal+gh@gmail.com>
* step_through tests: skip instead of xfail
* test_empty_doc should be fixed with new Thinc version
* remove outdated test (there are other misaligned tests now)
* xfail reason
* fix test according to french exceptions
* clarified some skipped tests
* skip ukranian test instead of xfail
* skip instead of xfail
* skip + reason instead of xfail
* removed obsolete tests referring to removed "set_frozen" functionality
* fix test 999
* remove unused AlignmentError
* remove xfail where possible, skip otherwise
* increment thinc release for empty_doc test
* Refactor Chinese tokenizer configuration
Refactor `ChineseTokenizer` configuration so that it uses a single
`segmenter` setting to choose between character segmentation, jieba, and
pkuseg.
* replace `use_jieba`, `use_pkuseg`, `require_pkuseg` with the setting
`segmenter` with the supported values: `char`, `jieba`, `pkuseg`
* make the default segmenter plain character segmentation `char` (no
additional libraries required)
* Fix Chinese serialization test to use char default
* Warn if attempting to customize other segmenter
Add a warning if `Chinese.pkuseg_update_user_dict` is called when
another segmenter is selected.
Remove corpus-specific tag maps from the language data for languages
without custom tokenizers. For languages with custom word segmenters
that also provide tags (Japanese and Korean), the tag maps for the
custom tokenizers are kept as the default.
The default tag maps for languages without custom tokenizers are now the
default tag map from `lang/tag_map/py`, UPOS -> UPOS.
* Convert custom user_data to token extension format
Convert the user_data values so that they can be loaded as custom token
extensions for `inflection`, `reading_form`, `sub_tokens`, and `lemma`.
* Reset Underscore state in ja tokenizer tests
* user_dict fields: adding inflections, reading_forms, sub_tokens
deleting: unidic_tags
improve code readability around the token alignment procedure
* add test cases, replace fugashi with sudachipy in conftest
* move bunsetu.py to spaCy Universe as a pipeline component BunsetuRecognizer
* tag is space -> both surface and tag are spaces
* consider len(text)==0
* Use `config` dict for tokenizer settings
* Add serialization of split mode setting
* Add tests for tokenizer split modes and serialization of split mode
setting
Based on #5561
* Add more rules to deal with Japanese UD mappings
Japanese UD rules sometimes give different UD tags to tokens with the
same underlying POS tag. The UD spec indicates these cases should be
disambiguated using the output of a tool called "comainu", but rules are
enough to get the right result.
These rules are taken from Ginza at time of writing, see #3756.
* Add new tags from GSD
This is a few rare tags that aren't in Unidic but are in the GSD data.
* Add basic Japanese sentencization
This code is taken from Ginza again.
* Add sentenceizer quote handling
Could probably add more paired characters but this will do for now. Also
includes some tests.
* Replace fugashi with SudachiPy
* Modify tag format to match GSD annotations
Some of the tests still need to be updated, but I want to get this up
for testing training.
* Deal with case with closing punct without opening
* refactor resolve_pos()
* change tag field separator from "," to "-"
* add TAG_ORTH_MAP
* add TAG_BIGRAM_MAP
* revise rules for 連体詞
* revise rules for 連体詞
* improve POS about 2%
* add syntax_iterator.py (not mature yet)
* improve syntax_iterators.py
* improve syntax_iterators.py
* add phrases including nouns and drop NPs consist of STOP_WORDS
* First take at noun chunks
This works in many situations but still has issues in others.
If the start of a subtree has no noun, then nested phrases can be
generated.
また行きたい、そんな気持ちにさせてくれるお店です。
[そんな気持ち, また行きたい、そんな気持ちにさせてくれるお店]
For some reason て gets included sometimes. Not sure why.
ゲンに連れ添って円盤生物を調査するパートナーとなる。
[て円盤生物, ...]
Some phrases that look like they should be split are grouped together;
not entirely sure that's wrong. This whole thing becomes one chunk:
道の駅遠山郷北側からかぐら大橋南詰現道交点までの1.060kmのみ開通済み
* Use new generic get_words_and_spaces
The new get_words_and_spaces function is simpler than what was used in
Japanese, so it's good to be able to switch to it. However, there was an
issue. The new function works just on text, so POS info could get out of
sync. Fixing this required a small change to the way dtokens (tokens
with POS and lemma info) were generated.
Specifically, multiple extraneous spaces now become a single token, so
when generating dtokens multiple space tokens should be created in a
row.
* Fix noun_chunks, should be working now
* Fix some tests, add naughty strings tests
Some of the existing tests changed because the tokenization mode of
Sudachi changed to the more fine-grained A mode.
Sudachi also has issues with some strings, so this adds a test against
the naughty strings.
* Remove empty Sudachi tokens
Not doing this creates zero-length tokens and causes errors in the
internal spaCy processing.
* Add yield_bunsetu back in as a separate piece of code
Co-authored-by: Hiroshi Matsuda <40782025+hiroshi-matsuda-rit@users.noreply.github.com>
Co-authored-by: hiroshi <hiroshi_matsuda@megagon.ai>
Update Polish tokenizer for UD_Polish-PDB, which is a relatively major
change from the existing tokenizer. Unused exceptions files and
conflicting test cases removed.
Co-authored-by: Matthew Honnibal <honnibal+gh@gmail.com>
* Reduce stored lexemes data, move feats to lookups
* Move non-derivable lexemes features (`norm / cluster / prob`) to
`spacy-lookups-data` as lookups
* Get/set `norm` in both lookups and `LexemeC`, serialize in lookups
* Remove `cluster` and `prob` from `LexemesC`, get/set/serialize in
lookups only
* Remove serialization of lexemes data as `vocab/lexemes.bin`
* Remove `SerializedLexemeC`
* Remove `Lexeme.to_bytes/from_bytes`
* Modify normalization exception loading:
* Always create `Vocab.lookups` table `lexeme_norm` for
normalization exceptions
* Load base exceptions from `lang.norm_exceptions`, but load
language-specific exceptions from lookups
* Set `lex_attr_getter[NORM]` including new lookups table in
`BaseDefaults.create_vocab()` and when deserializing `Vocab`
* Remove all cached lexemes when deserializing vocab to override
existing normalizations with the new normalizations (as a replacement
for the previous step that replaced all lexemes data with the
deserialized data)
* Skip English normalization test
Skip English normalization test because the data is now in
`spacy-lookups-data`.
* Remove norm exceptions
Moved to spacy-lookups-data.
* Move norm exceptions test to spacy-lookups-data
* Load extra lookups from spacy-lookups-data lazily
Load extra lookups (currently for cluster and prob) lazily from the
entry point `lg_extra` as `Vocab.lookups_extra`.
* Skip creating lexeme cache on load
To improve model loading times, do not create the full lexeme cache when
loading. The lexemes will be created on demand when processing.
* Identify numeric values in Lexeme.set_attrs()
With the removal of a special case for `PROB`, also identify `float` to
avoid trying to convert it with the `StringStore`.
* Skip lexeme cache init in from_bytes
* Unskip and update lookups tests for python3.6+
* Update vocab pickle to include lookups_extra
* Update vocab serialization tests
Check strings rather than lexemes since lexemes aren't initialized
automatically, account for addition of "_SP".
* Re-skip lookups test because of python3.5
* Skip PROB/float values in Lexeme.set_attrs
* Convert is_oov from lexeme flag to lex in vectors
Instead of storing `is_oov` as a lexeme flag, `is_oov` reports whether
the lexeme has a vector.
Co-authored-by: Matthew Honnibal <honnibal+gh@gmail.com>
* Limiting noun_chunks for specific langauges
* Limiting noun_chunks for specific languages
Contributor Agreement
* Addressing review comments
* Removed unused fixtures and imports
* Add fa_tokenizer in test suite
* Use fa_tokenizer in test
* Undo extraneous reformatting
Co-authored-by: adrianeboyd <adrianeboyd@gmail.com>
* Add pkuseg and serialization support for Chinese
Add support for pkuseg alongside jieba
* Specify model through `Language` meta:
* split on characters (if no word segmentation packages are installed)
```
Chinese(meta={"tokenizer": {"config": {"use_jieba": False, "use_pkuseg": False}}})
```
* jieba (remains the default tokenizer if installed)
```
Chinese()
Chinese(meta={"tokenizer": {"config": {"use_jieba": True}}}) # explicit
```
* pkuseg
```
Chinese(meta={"tokenizer": {"config": {"pkuseg_model": "default", "use_jieba": False, "use_pkuseg": True}}})
```
* The new tokenizer setting `require_pkuseg` is used to override
`use_jieba` default, which is intended for models that provide a pkuseg
model:
```
nlp_pkuseg = Chinese(meta={"tokenizer": {"config": {"pkuseg_model": "default", "require_pkuseg": True}}})
nlp = Chinese() # has `use_jieba` as `True` by default
nlp.from_bytes(nlp_pkuseg.to_bytes()) # `require_pkuseg` overrides `use_jieba` when calling the tokenizer
```
Add support for serialization of tokenizer settings and pkuseg model, if
loaded
* Add sorting for `Language.to_bytes()` serialization of `Language.meta`
so that the (emptied, but still present) tokenizer metadata is in a
consistent position in the serialized data
Extend tests to cover all three tokenizer configurations and
serialization
* Fix from_disk and tests without jieba or pkuseg
* Load cfg first and only show error if `use_pkuseg`
* Fix blank/default initialization in serialization tests
* Explicitly initialize jieba's cache on init
* Add serialization for pkuseg pre/postprocessors
* Reformat pkuseg install message
UD_Danish-DDT has (as far as I can tell) hallucinated periods after
abbreviations, so the changes are an artifact of the corpus and not due
to anything meaningful about Danish tokenization.
* don't split on a colon. Colon is used to attach suffixes for abbreviations
* tokenize on any of LIST_HYPHENS (except a single hyphen), not just on --
* simplify infix rules by merging similar rules
* Mark most Hungarian tokenizer test cases as slow
Mark most Hungarian tokenizer test cases as slow to reduce the runtime
of the test suite in ordinary usage:
* for normal tests: run default tests plus 10% of the detailed tests
* for slow tests: run all tests
* Rework to mark individual tests as slow
* Adding Support for Yoruba
* test text
* Updated test string.
* Fixing encoding declaration.
* Adding encoding to stop_words.py
* Added contributor agreement and removed iranlowo.
* Added removed test files and removed iranlowo to keep project bare.
* Returned CONTRIBUTING.md to default state.
* Added delted conftest entries
* Tidy up and auto-format
* Revert CONTRIBUTING.md
Co-authored-by: Ines Montani <ines@ines.io>
* Enable lex_attrs on Finnish
* Copy the Danish tokenizer rules to Finnish
Specifically, don't break hyphenated compound words
* Contributor agreement
* A new file for Finnish tokenizer rules instead of including the Danish ones
- added some tests for tokenization issues
- fixed some issues with tokenization of words with hyphen infix
- rewrote the "tokenizer_exceptions.py" file (stemming from the German version)
* Expose tokenizer rules as a property
Expose the tokenizer rules property in the same way as the other core
properties. (The cache resetting is overkill, but consistent with
`from_bytes` for now.)
Add tests and update Tokenizer API docs.
* Update Hungarian punctuation to remove empty string
Update Hungarian punctuation definitions so that `_units` does not match
an empty string.
* Use _load_special_tokenization consistently
Use `_load_special_tokenization()` and have it to handle `None` checks.
* Fix precedence of `token_match` vs. special cases
Remove `token_match` check from `_split_affixes()` so that special cases
have precedence over `token_match`. `token_match` is checked only before
infixes are split.
* Add `make_debug_doc()` to the Tokenizer
Add `make_debug_doc()` to the Tokenizer as a working implementation of
the pseudo-code in the docs.
Add a test (marked as slow) that checks that `nlp.tokenizer()` and
`nlp.tokenizer.make_debug_doc()` return the same non-whitespace tokens
for all languages that have `examples.sentences` that can be imported.
* Update tokenization usage docs
Update pseudo-code and algorithm description to correspond to
`nlp.tokenizer.make_debug_doc()` with example debugging usage.
Add more examples for customizing tokenizers while preserving the
existing defaults.
Minor edits / clarifications.
* Revert "Update Hungarian punctuation to remove empty string"
This reverts commit f0a577f7a5.
* Rework `make_debug_doc()` as `explain()`
Rework `make_debug_doc()` as `explain()`, which returns a list of
`(pattern_string, token_string)` tuples rather than a non-standard
`Doc`. Update docs and tests accordingly, leaving the visualization for
future work.
* Handle cases with bad tokenizer patterns
Detect when tokenizer patterns match empty prefixes and suffixes so that
`explain()` does not hang on bad patterns.
* Remove unused displacy image
* Add tokenizer.explain() to usage docs
* Rework Chinese language initialization
* Create a `ChineseTokenizer` class
* Modify jieba post-processing to handle whitespace correctly
* Modify non-jieba character tokenization to handle whitespace correctly
* Add a `create_tokenizer()` method to `ChineseDefaults`
* Load lexical attributes
* Update Chinese tag_map for UD v2
* Add very basic Chinese tests
* Test tokenization with and without jieba
* Test `like_num` attribute
* Fix try_jieba_import()
* Fix zh code formatting
* Create syntax_iterators.py
Replica of spacy/lang/fr/syntax_iterators.py
* Added import statements for SYNTAX_ITERATORS
* Create gustavengstrom.md
* Added "dobj" to list of labels in noun_chunks method and a test_noun_chunks method to the Swedish language model.
* Delete README-checkpoint.md
Co-authored-by: Gustav <gustav@davcon.se>
Co-authored-by: Ines Montani <ines@ines.io>
* Add default to util.get_entry_point
* Tidy up entry points
* Read lookups from entry points
* Remove lookup tables and related tests
* Add lookups install option
* Remove lemmatizer tests
* Remove logic to process language data files
* Update setup.cfg
* Adjust Table API and add docs
* Add attributes and update description [ci skip]
* Use strings.get_string_id instead of hash_string
* Fix table method calls
* Make orth arg in Lemmatizer.lookup optional
Fall back to string, which is now handled by Table.__contains__ out-of-the-box
* Fix method name
* Auto-format
Before this patch, half-width spaces between words were simply lost in
Japanese text. This wasn't immediately noticeable because much Japanese
text never uses spaces at all.
* Improve load_language_data helper
* WIP: Add Lookups implementation
* Start moving lemma data over to JSON
* WIP: move data over for more languages
* Convert more languages
* Fix lemmatizer fixtures in tests
* Finish conversion
* Auto-format JSON files
* Fix test for now
* Make sure tables are stored on instance
* Update docstrings
* Update docstrings and errors
* Update test
* Add Lookups.__len__
* Add serialization methods
* Add Lookups.remove_table
* Use msgpack for serialization to disk
* Fix file exists check
* Try using OrderedDict for everything
* Update .flake8 [ci skip]
* Try fixing serialization
* Update test_lookups.py
* Update test_serialize_vocab_strings.py
* Lookups / Tables now work
This implements the stubs in the Lookups/Table classes. Currently this
is in Cython but with no type declarations, so that could be improved.
* Add lookups to setup.py
* Actually add lookups pyx
The previous commit added the old py file...
* Lookups work-in-progress
* Move from pyx back to py
* Add string based lookups, fix serialization
* Update tests, language/lemmatizer to work with string lookups
There are some outstanding issues here:
- a pickling-related test fails due to the bloom filter
- some custom lemmatizers (fr/nl at least) have issues
More generally, there's a question of how to deal with the case where
you have a string but want to use the lookup table. Currently the table
allows access by string or id, but that's getting pretty awkward.
* Change lemmatizer lookup method to pass (orth, string)
* Fix token lookup
* Fix French lookup
* Fix lt lemmatizer test
* Fix Dutch lemmatizer
* Fix lemmatizer lookup test
This was using a normal dict instead of a Table, so checks for the
string instead of an integer key failed.
* Make uk/nl/ru lemmatizer lookup methods consistent
The mentioned tokenizers all have their own implementation of the
`lookup` method, which accesses a `Lookups` table. The way that was
called in `token.pyx` was changed so this should be updated to have the
same arguments as `lookup` in `lemmatizer.py` (specificially (orth/id,
string)).
Prior to this change tests weren't failing, but there would probably be
issues with normal use of a model. More tests should proably be added.
Additionally, the language-specific `lookup` implementations seem like
they might not be needed, since they handle things like lower-casing
that aren't actually language specific.
* Make recently added Greek method compatible
* Remove redundant class/method
Leftovers from a merge not cleaned up adequately.