Commit Graph

111 Commits

Author SHA1 Message Date
Matthew Honnibal 46c02d25b1 Merge changes to test_ner 2019-09-18 21:41:24 +02:00
tamuhey 875f3e5d8c remove redundant __call__ method in pipes.TextCategorizer (#4305)
* remove redundant __call__ method in pipes.TextCategorizer

Because the parent __call__ method behaves in the same way.

* fix: Pipe.__call__ arg

* fix: invalid arg in Pipe.__call__

* modified:   spacy/tests/regression/test_issue4278.py (#4278)

* deleted:    Pipfile
2019-09-18 21:31:27 +02:00
adrianeboyd b5d999e510 Add textcat to train CLI (#4226)
* Add doc.cats to spacy.gold at the paragraph level

Support `doc.cats` as `"cats": [{"label": string, "value": number}]` in
the spacy JSON training format at the paragraph level.

* `spacy.gold.docs_to_json()` writes `docs.cats`

* `GoldCorpus` reads in cats in each `GoldParse`

* Update instances of gold_tuples to handle cats

Update iteration over gold_tuples / gold_parses to handle addition of
cats at the paragraph level.

* Add textcat to train CLI

* Add textcat options to train CLI
* Add textcat labels in `TextCategorizer.begin_training()`
* Add textcat evaluation to `Scorer`:
  * For binary exclusive classes with provided label: F1 for label
  * For 2+ exclusive classes: F1 macro average
  * For multilabel (not exclusive): ROC AUC macro average (currently
relying on sklearn)
* Provide user info on textcat evaluation settings, potential
incompatibilities
* Provide pipeline to Scorer in `Language.evaluate` for textcat config
* Customize train CLI output to include only metrics relevant to current
pipeline
* Add textcat evaluation to evaluate CLI

* Fix handling of unset arguments and config params

Fix handling of unset arguments and model confiug parameters in Scorer
initialization.

* Temporarily add sklearn requirement

* Remove sklearn version number

* Improve Scorer handling of models without textcats

* Fixing Scorer handling of models without textcats

* Update Scorer output for python 2.7

* Modify inf in Scorer for python 2.7

* Auto-format

Also make small adjustments to make auto-formatting with black easier and produce nicer results

* Move error message to Errors

* Update documentation

* Add cats to annotation JSON format [ci skip]

* Fix tpl flag and docs [ci skip]

* Switch to internal roc_auc_score

Switch to internal `roc_auc_score()` adapted from scikit-learn.

* Add AUCROCScore tests and improve errors/warnings

* Add tests for AUCROCScore and roc_auc_score
* Add missing error for only positive/negative values
* Remove unnecessary warnings and errors

* Make reduced roc_auc_score functions private

Because most of the checks and warnings have been stripped for the
internal functions and access is only intended through `ROCAUCScore`,
make the functions for roc_auc_score adapted from scikit-learn private.

* Check that data corresponds with multilabel flag

Check that the training instances correspond with the multilabel flag,
adding the multilabel flag if required.

* Add textcat score to early stopping check

* Add more checks to debug-data for textcat

* Add example training data for textcat

* Add more checks to textcat train CLI

* Check configuration when extending base model
* Fix typos

* Update textcat example data

* Provide licensing details and licenses for data
* Remove two labels with no positive instances from jigsaw-toxic-comment
data.


Co-authored-by: Ines Montani <ines@ines.io>
2019-09-15 22:31:31 +02:00
Ines Montani 16c2522791 Merge branch 'master' into develop 2019-09-14 16:42:01 +02:00
adrianeboyd 6942a6a69b Extend default punct for sentencizer (#4290)
Most of these characters are for languages / writing systems that aren't
supported by spacy, but I don't think it causes problems to include
them. In the UD evals, Hindi and Urdu improve a lot as expected (from
0-10% to 70-80%) and Persian improves a little (90% to 96%). Tamil
improves in combination with #4288.

The punctuation list is converted to a set internally because of its
increased length.

Sentence final punctuation generated with:

```
unichars -gas '[\p{Sentence_Break=STerm}\p{Sentence_Break=ATerm}]' '\p{Terminal_Punctuation}'
```

See: https://stackoverflow.com/a/9508766/461847

Fixes #4269.
2019-09-14 15:25:48 +02:00
Ines Montani 27106d6528 Merge branch 'master' into develop 2019-09-13 17:07:17 +02:00
Sofie Van Landeghem 2ae5db580e dim bugfix when incl_prior is False (#4285) 2019-09-13 16:30:05 +02:00
Ines Montani 3c3658ef9f Merge branch 'master' into develop 2019-09-12 18:03:01 +02:00
Ines Montani 228bbf506d Improve label properties on pipes 2019-09-12 18:02:44 +02:00
Ines Montani 655b434553 Merge branch 'master' into develop 2019-09-12 11:39:18 +02:00
tamuhey 71909cdf22 Fix iss4278 (#4279)
* fix: len(tuple) == 2

* (#4278) add fail test

* add contributor's aggreement
2019-09-12 10:44:49 +02:00
Ines Montani 8ebc3711dc Fix bug in Parser.labels and add test (#4275) 2019-09-11 18:29:35 +02:00
Matthew Honnibal c308cf3e3e
Merge branch 'master' into feature/lemmatizer 2019-08-25 13:52:27 +02:00
Matthew Honnibal bb911e5f4e Fix #3830: 'subtok' label being added even if learn_tokens=False (#4188)
* Prevent subtok label if not learning tokens

The parser introduces the subtok label to mark tokens that should be
merged during post-processing. Previously this happened even if we did
not have the --learn-tokens flag set. This patch passes the config
through to the parser, to prevent the problem.

* Make merge_subtokens a parser post-process if learn_subtokens

* Fix train script

* Add test for 3830: subtok problem

* Fix handlign of non-subtok in parser training
2019-08-23 17:54:00 +02:00
Ines Montani f5d3afb1a3 Fix typo in docstrings [ci skip] 2019-08-22 16:24:15 +02:00
Matthew Honnibal bcd08f20af Merge changes from master 2019-08-21 14:18:52 +02:00
adrianeboyd 8fe7bdd0fa Improve token pattern checking without validation (#4105)
* Fix typo in rule-based matching docs

* Improve token pattern checking without validation

Add more detailed token pattern checks without full JSON pattern validation and
provide more detailed error messages.

Addresses #4070 (also related: #4063, #4100).

* Check whether top-level attributes in patterns and attr for PhraseMatcher are
  in token pattern schema

* Check whether attribute value types are supported in general (as opposed to
  per attribute with full validation)

* Report various internal error types (OverflowError, AttributeError, KeyError)
  as ValueError with standard error messages

* Check for tagger/parser in PhraseMatcher pipeline for attributes TAG, POS,
  LEMMA, and DEP

* Add error messages with relevant details on how to use validate=True or nlp()
  instead of nlp.make_doc()

* Support attr=TEXT for PhraseMatcher

* Add NORM to schema

* Expand tests for pattern validation, Matcher, PhraseMatcher, and EntityRuler

* Remove unnecessary .keys()

* Rephrase error messages

* Add another type check to Matcher

Add another type check to Matcher for more understandable error messages
in some rare cases.

* Support phrase_matcher_attr=TEXT for EntityRuler

* Don't use spacy.errors in examples and bin scripts

* Fix error code

* Auto-format

Also try get Azure pipelines to finally start a build :(

* Update errors.py


Co-authored-by: Ines Montani <ines@ines.io>
Co-authored-by: Matthew Honnibal <honnibal+gh@gmail.com>
2019-08-21 14:00:37 +02:00
Ines Montani f65e36925d Fix absolute imports and avoid importing from cli 2019-08-20 15:08:59 +02:00
Sofie Van Landeghem 0ba1b5eebc CLI scripts for entity linking (wikipedia & generic) (#4091)
* document token ent_kb_id

* document span kb_id

* update pipeline documentation

* prior and context weights as bool's instead

* entitylinker api documentation

* drop for both models

* finish entitylinker documentation

* small fixes

* documentation for KB

* candidate documentation

* links to api pages in code

* small fix

* frequency examples as counts for consistency

* consistent documentation about tensors returned by predict

* add entity linking to usage 101

* add entity linking infobox and KB section to 101

* entity-linking in linguistic features

* small typo corrections

* training example and docs for entity_linker

* predefined nlp and kb

* revert back to similarity encodings for simplicity (for now)

* set prior probabilities to 0 when excluded

* code clean up

* bugfix: deleting kb ID from tokens when entities were removed

* refactor train el example to use either model or vocab

* pretrain_kb example for example kb generation

* add to training docs for KB + EL example scripts

* small fixes

* error numbering

* ensure the language of vocab and nlp stay consistent across serialization

* equality with =

* avoid conflict in errors file

* add error 151

* final adjustements to the train scripts - consistency

* update of goldparse documentation

* small corrections

* push commit

* turn kb_creator into CLI script (wip)

* proper parameters for training entity vectors

* wikidata pipeline split up into two executable scripts

* remove context_width

* move wikidata scripts in bin directory, remove old dummy script

* refine KB script with logs and preprocessing options

* small edits

* small improvements to logging of EL CLI script
2019-08-13 15:38:59 +02:00
adrianeboyd 69aca7d839 Add validate option to EntityRuler (#4089)
* Add validate option to EntityRuler

* Add validate to EntityRuler, passed to Matcher and PhraseMatcher

* Add validate to usage and API docs

* Update website/docs/usage/rule-based-matching.md

Co-Authored-By: Ines Montani <ines@ines.io>

* Update website/docs/usage/rule-based-matching.md

Co-Authored-By: Ines Montani <ines@ines.io>
2019-08-07 00:40:53 +02:00
Matthew Honnibal 4632c597e7 Fix Pipe base class 2019-08-01 17:29:01 +02:00
Sofie Van Landeghem 7de3b129ab Resolve edge case when calling textcat.predict with empty doc (#4035)
* resolve edge case where no doc has tokens when calling textcat.predict

* more explicit value test
2019-07-30 14:58:01 +02:00
Matthew Honnibal 06eb428ed1 Make pipe base class a bit less presumptuous 2019-07-28 17:56:11 +02:00
Matthew Honnibal 16b5144095 Don't raise NotImplemented in Pipe.update 2019-07-28 17:54:11 +02:00
Matthew Honnibal 73e095923f 💫 Improve error message when model.from_bytes() dies (#4014)
* Improve error message when model.from_bytes() dies

When Thinc's model.from_bytes() is called with a mismatched model, often
we get a particularly ungraceful error,

e.g. "AttributeError: FunctionLayer has no attribute G"

This is because we're trying to load the parameters for something like
a LayerNorm layer, and the model architecture has some other layer there
instead. This is obviously terrible, especially since the error *type*
is wrong.

I've changed it to raise a ValueError. The error message is still
probably a bit terse, but it's hard to be sure exactly what's gone
wrong.

* Update spacy/pipeline/pipes.pyx

* Update spacy/pipeline/pipes.pyx

* Update spacy/pipeline/pipes.pyx

* Update spacy/syntax/nn_parser.pyx

* Update spacy/syntax/nn_parser.pyx

* Update spacy/pipeline/pipes.pyx

Co-Authored-By: Matthew Honnibal <honnibal+gh@gmail.com>

* Update spacy/pipeline/pipes.pyx

Co-Authored-By: Matthew Honnibal <honnibal+gh@gmail.com>


Co-authored-by: Ines Montani <ines@ines.io>
2019-07-24 11:27:34 +02:00
svlandeg 4e7ec1ed31 return fix 2019-07-23 14:23:58 +02:00
svlandeg 400ff342cf replace assert's with custom error messages 2019-07-23 11:52:48 +02:00
svlandeg 20389e4553 format and bugfix 2019-07-22 15:08:17 +02:00
svlandeg 41fb5204ba output tensors as part of predict 2019-07-19 14:47:36 +02:00
svlandeg 21176517a7 have gold.links correspond exactly to doc.ents 2019-07-19 12:36:15 +02:00
svlandeg e1213eaf6a use original gold object in get_loss function 2019-07-18 13:35:10 +02:00
svlandeg ec55d2fccd filter training data beforehand (+black formatting) 2019-07-18 10:22:24 +02:00
svlandeg a63d15a142 code cleanup 2019-07-15 17:36:43 +02:00
svlandeg 60f299374f set default context width 2019-07-15 12:03:09 +02:00
Sofie Van Landeghem c4c21cb428 more friendly textcat errors (#3946)
* more friendly textcat errors with require_model and require_labels

* update thinc version with recent bugfix
2019-07-10 19:39:38 +02:00
Ines Montani 40cd03fc35 Improve EntityRuler serialization 2019-07-10 12:25:45 +02:00
Ines Montani 570ab1f481 Fix handling of old entity ruler files
Expected an `entity_ruler.jsonl` file in the top-level model directory, so the path passed to from_disk by default (model path plus componentn name), but with the suffix ".jsonl".
2019-07-10 12:14:12 +02:00
Ines Montani ea2050079b Auto-format 2019-07-10 12:03:05 +02:00
Ines Montani f2ea3e3ea2
Merge branch 'master' into feature/nel-wiki 2019-07-09 21:57:47 +02:00
Ines Montani 547464609d Remove merge_subtokens from parser postprocessing for now 2019-07-09 21:50:30 +02:00
Joshua Smith 2eb925bd05 Added an argument to `EntityRuler` constructor to pass attrs to… (#3919)
* Perserve flags in EntityRuler

The EntityRuler (explosion/spaCy#3526) does not preserve
overwrite flags (or `ent_id_sep`) when serialized.  This
commit adds support for serialization/deserialization preserving
overwrite and ent_id_sep flags.

* add signed contributor agreement

* flake8 cleanup

mostly blank line issues.

* mark test from the issue as needing a model

The test from the issue needs some language model for serialization
but the test wasn't originally marked correctly.

* Adds `phrase_matcher_attr` to allow args to PhraseMatcher

This is an added arg to pass to the `PhraseMatcher`. For example,
this allows creation of a case insensitive phrase matcher when the
`EntityRuler` is created.  References explosion/spaCy#3822

* remove unneeded model loading

The model didn't need to be loaded, and I replaced it with
a change that doesn't require it (using existings fixtures)

* updated docstring for new argument

* updated docs to reflect new argument to the EntityRuler constructor

* change tempdir handling to be compatible with python 2.7

* return conflicted code to entityruler

Some stuff got cut out because of merge conflicts, this
returns that code for the phrase_matcher_attr.

* fixed typo in the code added back after conflicts

* flake8 compliance

When I deconflicted the branch there were some flake8 issues
introduced. This resolves the spacing problems.

* test changes:  attempts to fix flaky test in python3.5

These tests seem to be alittle flaky in 3.5 so I changed the check to avoid
the comparisons that seem to be fail sometimes.
2019-07-09 20:09:17 +02:00
Joshua Smith e8420ab2b7 Added support for serializing overwrite and ent_id_sep (#3918)
* Perserve flags in EntityRuler

The EntityRuler (explosion/spaCy#3526) does not preserve
overwrite flags (or `ent_id_sep`) when serialized.  This
commit adds support for serialization/deserialization preserving
overwrite and ent_id_sep flags.

* add signed contributor agreement

* flake8 cleanup

mostly blank line issues.

* mark test from the issue as needing a model

The test from the issue needs some language model for serialization
but the test wasn't originally marked correctly.

* remove unneeded model loading

The model didn't need to be loaded, and I replaced it with
a change that doesn't require it (using existings fixtures)

* change tempdir handling to be compatible with python 2.7

* Adds code to handle item saved before this change.

This code chanes how the save files are handled and how the bytes
are stored as well.  This code adds check to dispatch correctly
if it encounters bytes or files saved in the old format (and tests
for those cases).

* use util function for tempdir management

Updated after PR comments: this code now uses the make_tempdir function from util
instead of doing it by hand.
2019-07-08 17:28:28 +02:00
svlandeg 668b17ea4a deuglify kb deserializer 2019-07-03 15:00:42 +02:00
svlandeg 8840d4b1b3 fix for context encoder optimizer 2019-07-03 13:35:36 +02:00
svlandeg 2d2dea9924 experiment with adding NER types to the feature vector 2019-06-29 14:52:36 +02:00
svlandeg c664f58246 adding prior probability as feature in the model 2019-06-28 16:22:58 +02:00
svlandeg 68a0662019 context encoder with Tok2Vec + linking model instead of cosine 2019-06-28 08:29:31 +02:00
Ines Montani 37f744ca00 Auto-format [ci skip] 2019-06-26 14:48:09 +02:00
svlandeg 1de61f68d6 improve speed of prediction loop 2019-06-26 13:53:10 +02:00
svlandeg 58a5b40ef6 clean up duplicate code 2019-06-24 15:19:58 +02:00