Commit Graph

32 Commits

Author SHA1 Message Date
Ines Montani 275bab62df Refactor CLI 2020-06-21 21:35:01 +02:00
Ines Montani c12713a8be Port CLI to Typer and add project stubs 2020-06-21 13:44:00 +02:00
Sofie Van Landeghem c0f4a1e43b
train is from-config by default (#5575)
* verbose and tag_map options

* adding init_tok2vec option and only changing the tok2vec that is specified

* adding omit_extra_lookups and verifying textcat config

* wip

* pretrain bugfix

* add replace and resume options

* train_textcat fix

* raw text functionality

* improve UX when KeyError or when input data can't be parsed

* avoid unnecessary access to goldparse in TextCat pipe

* save performance information in nlp.meta

* add noise_level to config

* move nn_parser's defaults to config file

* multitask in config - doesn't work yet

* scorer offering both F and AUC options, need to be specified in config

* add textcat verification code from old train script

* small fixes to config files

* clean up

* set default config for ner/parser to allow create_pipe to work as before

* two more test fixes

* small fixes

* cleanup

* fix NER pickling + additional unit test

* create_pipe as before
2020-06-12 02:02:07 +02:00
Ines Montani 24f72c669c Merge branch 'develop' into master-tmp 2020-05-21 18:39:06 +02:00
adrianeboyd bdff76dede
Various updates/additions to CLI scripts (#5362)
* `debug-data`: determine coverage of provided vectors

* `evaluate`: support `blank:lg` model to make it possible to just evaluate
tokenization

* `init-model`: add option to truncate vectors to N most frequent vectors
from word2vec file

* `train`:

  * if training on GPU, only run evaluation/timing on CPU in the first
    iteration

  * if training is aborted, exit with a non-0 exit status
2020-04-29 12:56:46 +02:00
adrianeboyd b71a11ff6d
Update morphologizer (#5108)
* Add pos and morph scoring to Scorer

Add pos, morph, and morph_per_type to `Scorer`. Report pos and morph
accuracy in `spacy evaluate`.

* Update morphologizer for v3

* switch to tagger-based morphologizer
* use `spacy.HashCharEmbedCNN` for morphologizer defaults
* add `Doc.is_morphed` flag

* Add morphologizer to train CLI

* Add basic morphologizer pipeline tests

* Add simple morphologizer training example

* Remove subword_features from CharEmbed models

Remove `subword_features` argument from `spacy.HashCharEmbedCNN.v1` and
`spacy.HashCharEmbedBiLSTM.v1` since in these cases `subword_features`
is always `False`.

* Rename setting in morphologizer example

Use `with_pos_tags` instead of `without_pos_tags`.

* Fix kwargs for spacy.HashCharEmbedBiLSTM.v1

* Remove defaults for spacy.HashCharEmbedBiLSTM.v1

Remove default `nM/nC` for `spacy.HashCharEmbedBiLSTM.v1`.

* Set random seed for textcat overfitting test
2020-04-02 14:46:32 +02:00
Ines Montani 83e0a6f3e3
Modernize plac commands for Python 3 (#4836) 2020-01-01 13:15:46 +01:00
Ines Montani a892821c51 More formatting changes 2019-12-25 17:59:52 +01:00
Ines Montani db55577c45
Drop Python 2.7 and 3.5 (#4828)
* Remove unicode declarations

* Remove Python 3.5 and 2.7 from CI

* Don't require pathlib

* Replace compat helpers

* Remove OrderedDict

* Use f-strings

* Set Cython compiler language level

* Fix typo

* Re-add OrderedDict for Table

* Update setup.cfg

* Revert CONTRIBUTING.md

* Revert lookups.md

* Revert top-level.md

* Small adjustments and docs [ci skip]
2019-12-22 01:53:56 +01:00
adrianeboyd b841d3fe75 Add a tagger-based SentenceRecognizer (#4713)
* Add sent_starts to GoldParse

* Add SentTagger pipeline component

Add `SentTagger` pipeline component as a subclass of `Tagger`.

* Model reduces default parameters from `Tagger` to be small and fast
* Hard-coded set of two labels:
  * S (1): token at beginning of sentence
  * I (0): all other sentence positions
* Sets `token.sent_start` values

* Add sentence segmentation to Scorer

Report `sent_p/r/f` for sentence boundaries, which may be provided by
various pipeline components.

* Add sentence segmentation to CLI evaluate

* Add senttagger metrics/scoring to train CLI

* Rename SentTagger to SentenceRecognizer

* Add SentenceRecognizer to spacy.pipes imports

* Add SentenceRecognizer serialization test

* Shorten component name to sentrec

* Remove duplicates from train CLI output metrics
2019-11-28 11:10:07 +01:00
adrianeboyd faaa832518 Generalize handling of tokenizer special cases (#4259)
* Generalize handling of tokenizer special cases

Handle tokenizer special cases more generally by using the Matcher
internally to match special cases after the affix/token_match
tokenization is complete.

Instead of only matching special cases while processing balanced or
nearly balanced prefixes and suffixes, this recognizes special cases in
a wider range of contexts:

* Allows arbitrary numbers of prefixes/affixes around special cases
* Allows special cases separated by infixes

Existing tests/settings that couldn't be preserved as before:

* The emoticon '")' is no longer a supported special case
* The emoticon ':)' in "example:)" is a false positive again

When merged with #4258 (or the relevant cache bugfix), the affix and
token_match properties should be modified to flush and reload all
special cases to use the updated internal tokenization with the Matcher.

* Remove accidentally added test case

* Really remove accidentally added test

* Reload special cases when necessary

Reload special cases when affixes or token_match are modified. Skip
reloading during initialization.

* Update error code number

* Fix offset and whitespace in Matcher special cases

* Fix offset bugs when merging and splitting tokens
* Set final whitespace on final token in inserted special case

* Improve cache flushing in tokenizer

* Separate cache and specials memory (temporarily)
* Flush cache when adding special cases
* Repeated `self._cache = PreshMap()` and `self._specials = PreshMap()`
are necessary due to this bug:
https://github.com/explosion/preshed/issues/21

* Remove reinitialized PreshMaps on cache flush

* Update UD bin scripts

* Update imports for `bin/`
* Add all currently supported languages
* Update subtok merger for new Matcher validation
* Modify blinded check to look at tokens instead of lemmas (for corpora
with tokens but not lemmas like Telugu)

* Use special Matcher only for cases with affixes

* Reinsert specials cache checks during normal tokenization for special
cases as much as possible
  * Additionally include specials cache checks while splitting on infixes
  * Since the special Matcher needs consistent affix-only tokenization
    for the special cases themselves, introduce the argument
    `with_special_cases` in order to do tokenization with or without
    specials cache checks
* After normal tokenization, postprocess with special cases Matcher for
special cases containing affixes

* Replace PhraseMatcher with Aho-Corasick

Replace PhraseMatcher with the Aho-Corasick algorithm over numpy arrays
of the hash values for the relevant attribute. The implementation is
based on FlashText.

The speed should be similar to the previous PhraseMatcher. It is now
possible to easily remove match IDs and matches don't go missing with
large keyword lists / vocabularies.

Fixes #4308.

* Restore support for pickling

* Fix internal keyword add/remove for numpy arrays

* Add test for #4248, clean up test

* Improve efficiency of special cases handling

* Use PhraseMatcher instead of Matcher
* Improve efficiency of merging/splitting special cases in document
  * Process merge/splits in one pass without repeated token shifting
  * Merge in place if no splits

* Update error message number

* Remove UD script modifications

Only used for timing/testing, should be a separate PR

* Remove final traces of UD script modifications

* Update UD bin scripts

* Update imports for `bin/`
* Add all currently supported languages
* Update subtok merger for new Matcher validation
* Modify blinded check to look at tokens instead of lemmas (for corpora
with tokens but not lemmas like Telugu)

* Add missing loop for match ID set in search loop

* Remove cruft in matching loop for partial matches

There was a bit of unnecessary code left over from FlashText in the
matching loop to handle partial token matches, which we don't have with
PhraseMatcher.

* Replace dict trie with MapStruct trie

* Fix how match ID hash is stored/added

* Update fix for match ID vocab

* Switch from map_get_unless_missing to map_get

* Switch from numpy array to Token.get_struct_attr

Access token attributes directly in Doc instead of making a copy of the
relevant values in a numpy array.

Add unsatisfactory warning for hash collision with reserved terminal
hash key. (Ideally it would change the reserved terminal hash and redo
the whole trie, but for now, I'm hoping there won't be collisions.)

* Restructure imports to export find_matches

* Implement full remove()

Remove unnecessary trie paths and free unused maps.

Parallel to Matcher, raise KeyError when attempting to remove a match ID
that has not been added.

* Switch to PhraseMatcher.find_matches

* Switch to local cdef functions for span filtering

* Switch special case reload threshold to variable

Refer to variable instead of hard-coded threshold

* Move more of special case retokenize to cdef nogil

Move as much of the special case retokenization to nogil as possible.

* Rewrap sort as stdsort for OS X

* Rewrap stdsort with specific types

* Switch to qsort

* Fix merge

* Improve cmp functions

* Fix realloc

* Fix realloc again

* Initialize span struct while retokenizing

* Temporarily skip retokenizing

* Revert "Move more of special case retokenize to cdef nogil"

This reverts commit 0b7e52c797.

* Revert "Switch to qsort"

This reverts commit a98d71a942.

* Fix specials check while caching

* Modify URL test with emoticons

The multiple suffix tests result in the emoticon `:>`, which is now
retokenized into one token as a special case after the suffixes are
split off.

* Refactor _apply_special_cases()

* Use cdef ints for span info used in multiple spots

* Modify _filter_special_spans() to prefer earlier

Parallel to #4414, modify _filter_special_spans() so that the earlier
span is preferred for overlapping spans of the same length.

* Replace MatchStruct with Entity

Replace MatchStruct with Entity since the existing Entity struct is
nearly identical.

* Replace Entity with more general SpanC

* Replace MatchStruct with SpanC

* Add error in debug-data if no dev docs are available (see #4575)

* Update azure-pipelines.yml

* Revert "Update azure-pipelines.yml"

This reverts commit ed1060cf59.

* Use latest wasabi

* Reorganise install_requires

* add dframcy to universe.json (#4580)

* Update universe.json [ci skip]

* Fix multiprocessing for as_tuples=True (#4582)

* Fix conllu script (#4579)

* force extensions to avoid clash between example scripts

* fix arg order and default file encoding

* add example config for conllu script

* newline

* move extension definitions to main function

* few more encodings fixes

* Add load_from_docbin example [ci skip]

TODO: upload the file somewhere

* Update README.md

* Add warnings about 3.8 (resolves #4593) [ci skip]

* Fixed typo: Added space between "recognize" and "various" (#4600)

* Fix DocBin.merge() example (#4599)

* Replace function registries with catalogue (#4584)

* Replace functions registries with catalogue

* Update __init__.py

* Fix test

* Revert unrelated flag [ci skip]

* Bugfix/dep matcher issue 4590 (#4601)

* add contributor agreement for prilopes

* add test for issue #4590

* fix on_match params for DependencyMacther (#4590)

* Minor updates to language example sentences (#4608)

* Add punctuation to Spanish example sentences

* Combine multilanguage examples for lang xx

* Add punctuation to nb examples

* Always realloc to a larger size

Avoid potential (unlikely) edge case and cymem error seen in #4604.

* Add error in debug-data if no dev docs are available (see #4575)

* Update debug-data for GoldCorpus / Example

* Ignore None label in misaligned NER data
2019-11-13 21:24:35 +01:00
Sofie Van Landeghem e48a09df4e Example class for training data (#4543)
* OrigAnnot class instead of gold.orig_annot list of zipped tuples

* from_orig to replace from_annot_tuples

* rename to RawAnnot

* some unit tests for GoldParse creation and internal format

* removing orig_annot and switching to lists instead of tuple

* rewriting tuples to use RawAnnot (+ debug statements, WIP)

* fix pop() changing the data

* small fixes

* pop-append fixes

* return RawAnnot for existing GoldParse to have uniform interface

* clean up imports

* fix merge_sents

* add unit test for 4402 with new structure (not working yet)

* introduce DocAnnot

* typo fixes

* add unit test for merge_sents

* rename from_orig to from_raw

* fixing unit tests

* fix nn parser

* read_annots to produce text, doc_annot pairs

* _make_golds fix

* rename golds_to_gold_annots

* small fixes

* fix encoding

* have golds_to_gold_annots use DocAnnot

* missed a spot

* merge_sents as function in DocAnnot

* allow specifying only part of the token-level annotations

* refactor with Example class + underlying dicts

* pipeline components to work with Example objects (wip)

* input checking

* fix yielding

* fix calls to update

* small fixes

* fix scorer unit test with new format

* fix kwargs order

* fixes for ud and conllu scripts

* fix reading data for conllu script

* add in proper errors (not fixed numbering yet to avoid merge conflicts)

* fixing few more small bugs

* fix EL script
2019-11-11 17:35:27 +01:00
Ines Montani cf4ec88b38 Use latest wasabi 2019-11-04 02:38:45 +01:00
adrianeboyd b5d999e510 Add textcat to train CLI (#4226)
* Add doc.cats to spacy.gold at the paragraph level

Support `doc.cats` as `"cats": [{"label": string, "value": number}]` in
the spacy JSON training format at the paragraph level.

* `spacy.gold.docs_to_json()` writes `docs.cats`

* `GoldCorpus` reads in cats in each `GoldParse`

* Update instances of gold_tuples to handle cats

Update iteration over gold_tuples / gold_parses to handle addition of
cats at the paragraph level.

* Add textcat to train CLI

* Add textcat options to train CLI
* Add textcat labels in `TextCategorizer.begin_training()`
* Add textcat evaluation to `Scorer`:
  * For binary exclusive classes with provided label: F1 for label
  * For 2+ exclusive classes: F1 macro average
  * For multilabel (not exclusive): ROC AUC macro average (currently
relying on sklearn)
* Provide user info on textcat evaluation settings, potential
incompatibilities
* Provide pipeline to Scorer in `Language.evaluate` for textcat config
* Customize train CLI output to include only metrics relevant to current
pipeline
* Add textcat evaluation to evaluate CLI

* Fix handling of unset arguments and config params

Fix handling of unset arguments and model confiug parameters in Scorer
initialization.

* Temporarily add sklearn requirement

* Remove sklearn version number

* Improve Scorer handling of models without textcats

* Fixing Scorer handling of models without textcats

* Update Scorer output for python 2.7

* Modify inf in Scorer for python 2.7

* Auto-format

Also make small adjustments to make auto-formatting with black easier and produce nicer results

* Move error message to Errors

* Update documentation

* Add cats to annotation JSON format [ci skip]

* Fix tpl flag and docs [ci skip]

* Switch to internal roc_auc_score

Switch to internal `roc_auc_score()` adapted from scikit-learn.

* Add AUCROCScore tests and improve errors/warnings

* Add tests for AUCROCScore and roc_auc_score
* Add missing error for only positive/negative values
* Remove unnecessary warnings and errors

* Make reduced roc_auc_score functions private

Because most of the checks and warnings have been stripped for the
internal functions and access is only intended through `ROCAUCScore`,
make the functions for roc_auc_score adapted from scikit-learn private.

* Check that data corresponds with multilabel flag

Check that the training instances correspond with the multilabel flag,
adding the multilabel flag if required.

* Add textcat score to early stopping check

* Add more checks to debug-data for textcat

* Add example training data for textcat

* Add more checks to textcat train CLI

* Check configuration when extending base model
* Fix typos

* Update textcat example data

* Provide licensing details and licenses for data
* Remove two labels with no positive instances from jigsaw-toxic-comment
data.


Co-authored-by: Ines Montani <ines@ines.io>
2019-09-15 22:31:31 +02:00
Ines Montani 89f2b87266 Open file as utf-8 (closes #4138) 2019-08-18 13:55:34 +02:00
Ines Montani f35a8221d8 Move generation of parses out of with blocks 2019-08-18 13:54:26 +02:00
Ines Montani 7917ce2f73 Make flag shortcut consistent and document 2019-04-22 14:23:44 +02:00
Krzysztof Kowalczyk cc1516ec26 Improved training and evaluation (#3538)
* Add early stopping

* Add return_score option to evaluate

* Fix missing str to path conversion

* Fix import + old python compatibility

* Fix bad beam_width setting during cpu evaluation in spacy train with gpu option turned on
2019-04-15 12:04:36 +02:00
Jari Bakken ba8a840f84 spacy.cli.evaluate: fix TypeError (#3101) 2018-12-28 11:14:28 +01:00
Ines Montani ffdd5e964f
Small CLI improvements (#3030)
* Add todo

* Auto-format

* Update wasabi pin

* Format training results with wasabi

* Remove loading animation from model saving

Currently behaves weirdly

* Inline messages

* Remove unnecessary path2str

Already taken care of by printer

* Inline messages in CLI

* Remove unused function

* Move loading indicator into loading function

* Check for invalid whitespace entities
2018-12-08 11:49:43 +01:00
Ines Montani 37c7c85a86 💫 New JSON helpers, training data internals & CLI rewrite (#2932)
* Support nowrap setting in util.prints

* Tidy up and fix whitespace

* Simplify script and use read_jsonl helper

* Add JSON schemas (see #2928)

* Deprecate Doc.print_tree

Will be replaced with Doc.to_json, which will produce a unified format

* Add Doc.to_json() method (see #2928)

Converts Doc objects to JSON using the same unified format as the training data. Method also supports serializing selected custom attributes in the doc._. space.

* Remove outdated test

* Add write_json and write_jsonl helpers

* WIP: Update spacy train

* Tidy up spacy train

* WIP: Use wasabi for formatting

* Add GoldParse helpers for JSON format

* WIP: add debug-data command

* Fix typo

* Add missing import

* Update wasabi pin

* Add missing import

* 💫 Refactor CLI (#2943)

To be merged into #2932.

## Description
- [x] refactor CLI To use [`wasabi`](https://github.com/ines/wasabi)
- [x] use [`black`](https://github.com/ambv/black) for auto-formatting
- [x] add `flake8` config
- [x] move all messy UD-related scripts to `cli.ud`
- [x] make converters function that take the opened file and return the converted data (instead of having them handle the IO)

### Types of change
enhancement

## Checklist
<!--- Before you submit the PR, go over this checklist and make sure you can
tick off all the boxes. [] -> [x] -->
- [x] I have submitted the spaCy Contributor Agreement.
- [x] I ran the tests, and all new and existing tests passed.
- [x] My changes don't require a change to the documentation, or if they do, I've added all required information.

* Update wasabi pin

* Delete old test

* Update errors

* Fix typo

* Tidy up and format remaining code

* Fix formatting

* Improve formatting of messages

* Auto-format remaining code

* Add tok2vec stuff to spacy.train

* Fix typo

* Update wasabi pin

* Fix path checks for when train() is called as function

* Reformat and tidy up pretrain script

* Update argument annotations

* Raise error if model language doesn't match lang

* Document new train command
2018-11-30 20:16:14 +01:00
Ines Montani 3141e04822
💫 New system for error messages and warnings (#2163)
* Add spacy.errors module

* Update deprecation and user warnings

* Replace errors and asserts with new error message system

* Remove redundant asserts

* Fix whitespace

* Add messages for print/util.prints statements

* Fix typo

* Fix typos

* Move CLI messages to spacy.cli._messages

* Add decorator to display error code with message

An implementation like this is nice because it only modifies the string when it's retrieved from the containing class – so we don't have to worry about manipulating tracebacks etc.

* Remove unused link in spacy.about

* Update errors for invalid pipeline components

* Improve error for unknown factories

* Add displaCy warnings

* Update formatting consistency

* Move error message to spacy.errors

* Update errors and check if doc returned by component is None
2018-04-03 15:50:31 +02:00
Johannes Dollinger bf94c13382 Don't fix random seeds on import 2018-02-13 12:42:23 +01:00
Søren Lind Kristiansen 7f0ab145e9 Don't pass CLI command name as dummy argument 2018-01-04 21:33:47 +01:00
Søren Lind Kristiansen a9ff6eadc9 Prefix dummy argument names with underscore 2018-01-03 20:48:12 +01:00
ines ce98fa7934 Fix formatting 2017-10-30 18:38:55 +01:00
ines d941fc3667 Tidy up CLI 2017-10-27 14:38:39 +02:00
Matthew Honnibal f4c9a98166 Fix spacy evaluate command on non-GPU 2017-10-06 13:17:47 -05:00
ines 73ac0aa0b5 Update spacy evaluate and add displaCy option 2017-10-04 00:03:15 +02:00
Matthew Honnibal f24c2e3a8a Fix evaluate for non-GPU 2017-10-03 22:47:31 +02:00
Matthew Honnibal a44c4c3a5b Add timer to evaluate 2017-10-03 09:15:35 -05:00
Matthew Honnibal 69c7c642c2 Add spacy evaluate 2017-10-01 14:05:04 -05:00