From fe2a5e03707b980ce9837365ebee4ff98c7f506a Mon Sep 17 00:00:00 2001 From: Matthew Honnibal Date: Sat, 27 Dec 2014 21:46:04 +1100 Subject: [PATCH] * Work on docstrings --- spacy/tokens.pyx | 25 +++++++++++++++++++++++++ 1 file changed, 25 insertions(+) diff --git a/spacy/tokens.pyx b/spacy/tokens.pyx index 009a0ecb6..ba6bfcb47 100644 --- a/spacy/tokens.pyx +++ b/spacy/tokens.pyx @@ -115,6 +115,17 @@ cdef class Tokens: @cython.boundscheck(False) cpdef np.ndarray[long, ndim=2] to_array(self, object attr_ids): + """Given a list of M attribute IDs, export the tokens to a numpy ndarray + of shape N*M, where N is the length of the sentence. + + Arguments: + attr_ids (list[int]): A list of attribute ID ints. + + Returns: + feat_array (numpy.ndarray[long, ndim=2]): A feature matrix, with one + row per word, and one column per attribute indicated in the input + attr_ids. + """ cdef int i, j cdef attr_id_t feature cdef np.ndarray[long, ndim=2] output @@ -125,6 +136,20 @@ cdef class Tokens: return output def count_by(self, attr_id_t attr_id): + """Produce a dict of {attribute (int): count (ints)} frequencies, keyed + by the values of the given attribute ID. + + >>> from spacy.en import English, attrs + >>> nlp = English() + >>> tokens = nlp(u'apple apple orange banana') + >>> tokens.count_by(attrs.SIC) + {12800L: 1, 11880L: 2, 7561L: 1} + >>> tokens.to_array([attrs.SIC]) + array([[11880], + [11880], + [ 7561], + [12800]]) + """ cdef int i cdef attr_t attr cdef size_t count