initialize through nlp object and with train_corpus

This commit is contained in:
svlandeg 2020-09-21 23:09:22 +02:00
parent 447b3e5787
commit fa5c416db6
1 changed files with 20 additions and 8 deletions

View File

@ -1,5 +1,9 @@
import warnings
from typing import Dict, Any, Optional, Iterable
from pathlib import Path
from spacy.training import Example
from spacy.util import dot_to_object
from wasabi import msg
from thinc.api import require_gpu, fix_random_seed, set_dropout_rate, Adam
from thinc.api import Model, data_validation, set_gpu_allocator
@ -71,12 +75,10 @@ def debug_model_cli(
exits=1,
)
model = pipe.model
# call _link_components directly as we won't call nlp.begin_training
nlp._link_components()
debug_model(nlp, model, print_settings=print_settings)
debug_model(config, nlp, model, print_settings=print_settings)
def debug_model(nlp, model: Model, *, print_settings: Optional[Dict[str, Any]] = None):
def debug_model(config, nlp, model: Model, *, print_settings: Optional[Dict[str, Any]] = None):
if not isinstance(model, Model):
msg.fail(
f"Requires a Thinc Model to be analysed, but found {type(model)} instead.",
@ -93,10 +95,21 @@ def debug_model(nlp, model: Model, *, print_settings: Optional[Dict[str, Any]] =
# STEP 1: Initializing the model and printing again
X = _get_docs()
_set_output_dim(nO=7, model=model)
# The output vector might differ from the official type of the output layer
with data_validation(False):
model.initialize(X=X)
# msg.info(f"Could not initialize the model with dummy data - using the train_corpus.")
try:
train_corpus = dot_to_object(config, config["training"]["train_corpus"])
nlp.begin_training(lambda: train_corpus(nlp))
msg.info("Initialized the model with the training corpus.")
except ValueError:
try:
_set_output_dim(nO=7, model=model)
nlp.begin_training(lambda: [Example.from_dict(x, {}) for x in X])
msg.info("Initialized the model with dummy data.")
except:
msg.fail("Could not initialize the model: you'll have to provide a valid train_corpus argument in the config file.", exits=1)
if print_settings.get("print_after_init"):
msg.divider(f"STEP 1 - after initialization")
_print_model(model, print_settings)
@ -114,8 +127,7 @@ def debug_model(nlp, model: Model, *, print_settings: Optional[Dict[str, Any]] =
if tok2vec:
tok2vec.predict(X)
Y, get_dX = model.begin_update(X)
# simulate a goldY value
if not goldY:
if goldY is None:
goldY = _simulate_gold(Y)
dY = get_gradient(goldY, Y, model.ops)
get_dX(dY)