* Begin upgrading to improved thinc API

This commit is contained in:
Matthew Honnibal 2015-11-05 03:53:03 +11:00
parent adc7bbd6cf
commit f8004c5f65
2 changed files with 19 additions and 55 deletions

View File

@ -5,20 +5,13 @@ from cymem.cymem cimport Pool
from thinc.learner cimport LinearModel
from thinc.features cimport Extractor, Feature
from thinc.typedefs cimport atom_t, feat_t, weight_t, class_t
from thinc.api cimport ExampleC
from thinc.api cimport Example, ExampleC
from preshed.maps cimport PreshMapArray
from .typedefs cimport hash_t
cdef int arg_max(const weight_t* scores, const int n_classes) nogil
cdef int arg_max_if_true(const weight_t* scores, const int* is_valid, int n_classes) nogil
cdef int arg_max_if_zero(const weight_t* scores, const int* costs, int n_classes) nogil
cdef class Model:
cdef readonly int n_classes
cdef readonly int n_feats
@ -31,4 +24,5 @@ cdef class Model:
cdef object model_loc
cdef object _templates
cdef Extractor _extractor
cdef Example _eg
cdef LinearModel _model

View File

@ -13,40 +13,7 @@ import numpy.random
from thinc.features cimport Feature, count_feats
from thinc.api cimport Example
cdef int arg_max(const weight_t* scores, const int n_classes) nogil:
cdef int i
cdef int best = 0
cdef weight_t mode = scores[0]
for i in range(1, n_classes):
if scores[i] > mode:
mode = scores[i]
best = i
return best
cdef int arg_max_if_true(const weight_t* scores, const int* is_valid,
const int n_classes) nogil:
cdef int i
cdef int best = 0
cdef weight_t mode = -900000
for i in range(n_classes):
if is_valid[i] and scores[i] > mode:
mode = scores[i]
best = i
return best
cdef int arg_max_if_zero(const weight_t* scores, const int* costs,
const int n_classes) nogil:
cdef int i
cdef int best = 0
cdef weight_t mode = -900000
for i in range(n_classes):
if costs[i] == 0 and scores[i] > mode:
mode = scores[i]
best = i
return best
from thinc.learner cimport arg_max, arg_max_if_true, arg_max_if_zero
cdef class Model:
@ -54,10 +21,12 @@ cdef class Model:
if model_loc is not None and path.isdir(model_loc):
model_loc = path.join(model_loc, 'model')
self._templates = templates
n_atoms = max([max(templ) for templ in templates]) + 1
self.n_classes = n_classes
self._extractor = Extractor(templates)
self.n_feats = self._extractor.n_templ
self._model = LinearModel(n_classes, self._extractor.n_templ)
self._model = LinearModel(n_classes, self._extractor)
self._eg = Example(n_classes, n_atoms, self._extractor.n_templ, self._extractor.n_templ)
self.model_loc = model_loc
if self.model_loc and path.exists(self.model_loc):
self._model.load(self.model_loc, freq_thresh=0)
@ -75,24 +44,25 @@ cdef class Model:
None, None)
def predict(self, Example eg):
self.set_scores(eg.c.scores, eg.c.atoms)
eg.c.guess = arg_max_if_true(eg.c.scores, eg.c.is_valid, self.n_classes)
self._model(eg)
def train(self, Example eg):
self.predict(eg)
eg.c.best = arg_max_if_zero(eg.c.scores, eg.c.costs, self.n_classes)
eg.c.cost = eg.c.costs[eg.c.guess]
self.update(eg.c.atoms, eg.c.guess, eg.c.best, eg.c.cost)
self._model.train(eg)
cdef const weight_t* score(self, atom_t* context) except NULL:
cdef int n_feats
feats = self._extractor.get_feats(context, &n_feats)
return self._model.get_scores(feats, n_feats)
memcpy(self._eg.c.atoms, context, self._eg.c.nr_atom * sizeof(context[0]))
self._model(self._eg)
return self._eg.scores
cdef int set_scores(self, weight_t* scores, atom_t* context) nogil:
cdef int n_feats
feats = self._extractor.get_feats(context, &n_feats)
self._model.set_scores(scores, feats, n_feats)
cdef int nr_feat = self._model.extractor.set_feats(self._eg.features, context)
self._model.set_scores(
scores,
self._model.weights.c_map,
self._eg.c.features,
nr_feat
)
cdef int update(self, atom_t* context, class_t guess, class_t gold, int cost) except -1:
cdef int n_feats