mirror of https://github.com/explosion/spaCy.git
Update tagger training example
This commit is contained in:
parent
e44bbb5361
commit
f1529463a8
|
@ -1,18 +1,21 @@
|
|||
"""A quick example for training a part-of-speech tagger, without worrying
|
||||
about the tokenization, or other language-specific customizations."""
|
||||
|
||||
from __future__ import unicode_literals
|
||||
from __future__ import print_function
|
||||
#!/usr/bin/env python
|
||||
# coding: utf8
|
||||
"""
|
||||
A simple example for training a part-of-speech tagger with a custom tag map.
|
||||
To allow us to update the tag map with our custom one, this example starts off
|
||||
with a blank Language class and modifies its defaults.
|
||||
"""
|
||||
from __future__ import unicode_literals, print_function
|
||||
|
||||
import plac
|
||||
import random
|
||||
from pathlib import Path
|
||||
|
||||
from spacy.vocab import Vocab
|
||||
from spacy.tagger import Tagger
|
||||
import spacy
|
||||
from spacy.util import get_lang_class
|
||||
from spacy.tokens import Doc
|
||||
from spacy.gold import GoldParse
|
||||
|
||||
import random
|
||||
|
||||
# You need to define a mapping from your data's part-of-speech tag names to the
|
||||
# Universal Part-of-Speech tag set, as spaCy includes an enum of these tags.
|
||||
|
@ -28,54 +31,67 @@ TAG_MAP = {
|
|||
|
||||
# Usually you'll read this in, of course. Data formats vary.
|
||||
# Ensure your strings are unicode.
|
||||
DATA = [
|
||||
(
|
||||
["I", "like", "green", "eggs"],
|
||||
["N", "V", "J", "N"]
|
||||
),
|
||||
(
|
||||
["Eat", "blue", "ham"],
|
||||
["V", "J", "N"]
|
||||
)
|
||||
TRAIN_DATA = [
|
||||
(["I", "like", "green", "eggs"], ["N", "V", "J", "N"]),
|
||||
(["Eat", "blue", "ham"], ["V", "J", "N"])
|
||||
]
|
||||
|
||||
|
||||
def ensure_dir(path):
|
||||
if not path.exists():
|
||||
path.mkdir()
|
||||
@plac.annotations(
|
||||
lang=("ISO Code of language to use", "option", "l", str),
|
||||
output_dir=("Optional output directory", "option", "o", Path),
|
||||
n_iter=("Number of training iterations", "option", "n", int))
|
||||
def main(lang='en', output_dir=None, n_iter=25):
|
||||
"""Create a new model, set up the pipeline and train the tagger. In order to
|
||||
train the tagger with a custom tag map, we're creating a new Language
|
||||
instance with a custom vocab.
|
||||
"""
|
||||
lang_cls = get_lang_class(lang) # get Language class
|
||||
lang_cls.Defaults.tag_map.update(TAG_MAP) # add tag map to defaults
|
||||
nlp = lang_cls() # initialise Language class
|
||||
|
||||
# add the parser to the pipeline
|
||||
# nlp.create_pipe works for built-ins that are registered with spaCy
|
||||
tagger = nlp.create_pipe('tagger')
|
||||
nlp.add_pipe(tagger)
|
||||
|
||||
def main(output_dir=None):
|
||||
optimizer = nlp.begin_training(lambda: [])
|
||||
for i in range(n_iter):
|
||||
random.shuffle(TRAIN_DATA)
|
||||
losses = {}
|
||||
for words, tags in TRAIN_DATA:
|
||||
doc = Doc(nlp.vocab, words=words)
|
||||
gold = GoldParse(doc, tags=tags)
|
||||
nlp.update([doc], [gold], sgd=optimizer, losses=losses)
|
||||
print(losses)
|
||||
|
||||
# test the trained model
|
||||
test_text = "I like blue eggs"
|
||||
doc = nlp(test_text)
|
||||
print('Tags', [(t.text, t.tag_, t.pos_) for t in doc])
|
||||
|
||||
# save model to output directory
|
||||
if output_dir is not None:
|
||||
output_dir = Path(output_dir)
|
||||
ensure_dir(output_dir)
|
||||
ensure_dir(output_dir / "pos")
|
||||
ensure_dir(output_dir / "vocab")
|
||||
if not output_dir.exists():
|
||||
output_dir.mkdir()
|
||||
nlp.to_disk(output_dir)
|
||||
print("Saved model to", output_dir)
|
||||
|
||||
vocab = Vocab(tag_map=TAG_MAP)
|
||||
# The default_templates argument is where features are specified. See
|
||||
# spacy/tagger.pyx for the defaults.
|
||||
tagger = Tagger(vocab)
|
||||
for i in range(25):
|
||||
for words, tags in DATA:
|
||||
doc = Doc(vocab, words=words)
|
||||
gold = GoldParse(doc, tags=tags)
|
||||
tagger.update(doc, gold)
|
||||
random.shuffle(DATA)
|
||||
tagger.model.end_training()
|
||||
doc = Doc(vocab, orths_and_spaces=zip(["I", "like", "blue", "eggs"], [True] * 4))
|
||||
tagger(doc)
|
||||
for word in doc:
|
||||
print(word.text, word.tag_, word.pos_)
|
||||
if output_dir is not None:
|
||||
tagger.model.dump(str(output_dir / 'pos' / 'model'))
|
||||
with (output_dir / 'vocab' / 'strings.json').open('w') as file_:
|
||||
tagger.vocab.strings.dump(file_)
|
||||
# test the save model
|
||||
print("Loading from", output_dir)
|
||||
nlp2 = spacy.load(output_dir)
|
||||
doc = nlp2(test_text)
|
||||
print('Tags', [(t.text, t.tag_, t.pos_) for t in doc])
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
plac.call(main)
|
||||
# I V VERB
|
||||
# like V VERB
|
||||
# blue N NOUN
|
||||
# eggs N NOUN
|
||||
|
||||
# Expected output:
|
||||
# [
|
||||
# ('I', 'N', 'NOUN'),
|
||||
# ('like', 'V', 'VERB'),
|
||||
# ('blue', 'J', 'ADJ'),
|
||||
# ('eggs', 'N', 'NOUN')
|
||||
# ]
|
||||
|
|
Loading…
Reference in New Issue