Update docs [ci skip]

This commit is contained in:
Ines Montani 2020-08-21 19:34:06 +02:00
parent 2cc4640385
commit f102164a1f
2 changed files with 54 additions and 26 deletions

View File

@ -123,7 +123,7 @@ $ python -m spacy init config [output_file] [--lang] [--pipeline] [--optimize] [
| Name | Description | | Name | Description |
| ------------------ | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | | ------------------ | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| `output_file` | Path to output `.cfg` file. If not set, the config is written to stdout so you can pipe it forward to a file. ~~Path (positional)~~ | | `output_file` | Path to output `.cfg` file or `-` to write the config to stdout (so you can pipe it forward to a file). Note that if you're writing to stdout, no additional logging info is printed. ~~Path (positional)~~ |
| `--lang`, `-l` | Optional code of the [language](/usage/models#languages) to use. Defaults to `"en"`. ~~str (option)~~ | | `--lang`, `-l` | Optional code of the [language](/usage/models#languages) to use. Defaults to `"en"`. ~~str (option)~~ |
| `--pipeline`, `-p` | Comma-separated list of trainable [pipeline components](/usage/processing-pipelines#built-in) to include in the model. Defaults to `"tagger,parser,ner"`. ~~str (option)~~ | | `--pipeline`, `-p` | Comma-separated list of trainable [pipeline components](/usage/processing-pipelines#built-in) to include in the model. Defaults to `"tagger,parser,ner"`. ~~str (option)~~ |
| `--optimize`, `-o` | `"efficiency"` or `"accuracy"`. Whether to optimize for efficiency (faster inference, smaller model, lower memory consumption) or higher accuracy (potentially larger and slower model). This will impact the choice of architecture, pretrained weights and related hyperparameters. Defaults to `"efficiency"`. ~~str (option)~~ | | `--optimize`, `-o` | `"efficiency"` or `"accuracy"`. Whether to optimize for efficiency (faster inference, smaller model, lower memory consumption) or higher accuracy (potentially larger and slower model). This will impact the choice of architecture, pretrained weights and related hyperparameters. Defaults to `"efficiency"`. ~~str (option)~~ |

View File

@ -22,8 +22,29 @@ its model architecture. The architecture is like a recipe for the network, and
you can't change the recipe once the dish has already been prepared. You have to you can't change the recipe once the dish has already been prepared. You have to
make a new one. make a new one.
<!-- TODO: maybe we can come up with an illustration here that shows how the pieces fit together? -->
## Type signatures {#type-sigs} ## Type signatures {#type-sigs}
<!-- TODO: update example, maybe simplify definition? -->
> #### Example
>
> ```python
> @spacy.registry.architectures.register("spacy.Tagger.v1")
> def build_tagger_model(
> tok2vec: Model[List[Doc], List[Floats2d]], nO: Optional[int] = None
> ) -> Model[List[Doc], List[Floats2d]]:
> t2v_width = tok2vec.get_dim("nO") if tok2vec.has_dim("nO") else None
> output_layer = Softmax(nO, t2v_width, init_W=zero_init)
> softmax = with_array(output_layer)
> model = chain(tok2vec, softmax)
> model.set_ref("tok2vec", tok2vec)
> model.set_ref("softmax", output_layer)
> model.set_ref("output_layer", output_layer)
> return model
> ```
The Thinc `Model` class is a **generic type** that can specify its input and The Thinc `Model` class is a **generic type** that can specify its input and
output types. Python uses a square-bracket notation for this, so the type output types. Python uses a square-bracket notation for this, so the type
~~Model[List, Dict]~~ says that each batch of inputs to the model will be a ~~Model[List, Dict]~~ says that each batch of inputs to the model will be a
@ -43,39 +64,46 @@ are:
| ~~Ragged~~ | A container to handle variable-length sequence data in an unpadded contiguous array. | | ~~Ragged~~ | A container to handle variable-length sequence data in an unpadded contiguous array. |
| ~~Padded~~ | A container to handle variable-length sequence data in a passed contiguous array. | | ~~Padded~~ | A container to handle variable-length sequence data in a passed contiguous array. |
The model type-signatures help you figure out which model architectures and The model type signatures help you figure out which model architectures and
components can fit together. For instance, the components can **fit together**. For instance, the
[`TextCategorizer`](/api/textcategorizer) class expects a model typed [`TextCategorizer`](/api/textcategorizer) class expects a model typed
~~Model[List[Doc], Floats2d]~~, because the model will predict one row of ~~Model[List[Doc], Floats2d]~~, because the model will predict one row of
category probabilities per `Doc`. In contrast, the `Tagger` class expects a category probabilities per [`Doc`](/api/doc). In contrast, the
model typed ~~Model[List[Doc], List[Floats2d]]~~, because it needs to predict [`Tagger`](/api/tagger) class expects a model typed ~~Model[List[Doc],
one row of probabilities per token. There's no guarantee that two models with List[Floats2d]]~~, because it needs to predict one row of probabilities per
the same type-signature can be used interchangeably. There are many other ways token.
they could be incompatible. However, if the types don't match, they almost
surely _won't_ be compatible. This little bit of validation goes a long way, There's no guarantee that two models with the same type signature can be used
especially if you configure your editor or other tools to highlight these errors interchangeably. There are many other ways they could be incompatible. However,
early. Thinc will also verify that your types match correctly when your config if the types don't match, they almost surely _won't_ be compatible. This little
file is processed at the beginning of training. bit of validation goes a long way, especially if you
[configure your editor](https://thinc.ai/docs/usage-type-checking) or other
tools to highlight these errors early. Thinc will also verify that your types
match correctly when your config file is processed at the beginning of training.
## Defining sublayers {#sublayers} ## Defining sublayers {#sublayers}
Model architecture functions often accept sublayers as arguments, so that you Model architecture functions often accept **sublayers as arguments**, so that
can try substituting a different layer into the network. Depending on how the you can try **substituting a different layer** into the network. Depending on
architecture function is structured, you might be able to define your network how the architecture function is structured, you might be able to define your
structure entirely through the [config system](/usage/training#config), using network structure entirely through the [config system](/usage/training#config),
layers that have already been defined. The using layers that have already been defined. The
[transformers documentation](/usage/embeddings-transformers#transformers) [transformers documentation](/usage/embeddings-transformers#transformers)
section shows a common example of swapping in a different sublayer. In most NLP section shows a common example of swapping in a different sublayer.
neural network models, the most important parts of the network are what we refer
to as the In most neural network models for NLP, the most important parts of the network
are what we refer to as the
[embed and encode](https://explosion.ai/blog/embed-encode-attend-predict) steps. [embed and encode](https://explosion.ai/blog/embed-encode-attend-predict) steps.
These steps together compute dense, context-sensitive representations of the These steps together compute dense, context-sensitive representations of the
tokens. Most of spaCy's default architectures accept a `tok2vec` layer as an tokens. Most of spaCy's default architectures accept a
argument, so you can control this important part of the network separately. This [`tok2vec` embedding layer](/api/architectures#tok2vec-arch) as an argument, so
makes it easy to switch between transformer, CNN, BiLSTM or other feature you can control this important part of the network separately. This makes it
extraction approaches. And if you want to define your own solution, all you need easy to **switch between** transformer, CNN, BiLSTM or other feature extraction
to do is register a ~~Model[List[Doc], List[Floats2d]]~~ architecture function, approaches. And if you want to define your own solution, all you need to do is
and you'll be able to try it out in any of spaCy components. register a ~~Model[List[Doc], List[Floats2d]]~~ architecture function, and
you'll be able to try it out in any of spaCy components.
<!-- TODO: example of switching sublayers -->
### Registering new architectures ### Registering new architectures