diff --git a/website/docs/usage/rule-based-matching.md b/website/docs/usage/rule-based-matching.md index 1db2405d1..f7866fe31 100644 --- a/website/docs/usage/rule-based-matching.md +++ b/website/docs/usage/rule-based-matching.md @@ -1158,17 +1158,17 @@ what you need for your application. > available corpus. For example, the corpus spaCy's [English models](/models/en) were trained on -defines a `PERSON` entity as just the **person name**, without titles like "Mr" -or "Dr". This makes sense, because it makes it easier to resolve the entity type -back to a knowledge base. But what if your application needs the full names, -_including_ the titles? +defines a `PERSON` entity as just the **person name**, without titles like "Mr." +or "Dr.". This makes sense, because it makes it easier to resolve the entity +type back to a knowledge base. But what if your application needs the full +names, _including_ the titles? ```python ### {executable="true"} import spacy nlp = spacy.load("en_core_web_sm") -doc = nlp("Dr Alex Smith chaired first board meeting of Acme Corp Inc.") +doc = nlp("Dr. Alex Smith chaired first board meeting of Acme Corp Inc.") print([(ent.text, ent.label_) for ent in doc.ents]) ``` @@ -1233,7 +1233,7 @@ def expand_person_entities(doc): # Add the component after the named entity recognizer nlp.add_pipe(expand_person_entities, after='ner') -doc = nlp("Dr Alex Smith chaired first board meeting of Acme Corp Inc.") +doc = nlp("Dr. Alex Smith chaired first board meeting of Acme Corp Inc.") print([(ent.text, ent.label_) for ent in doc.ents]) ```