From f0159ab4b6bc4554b92d0c7bac296c4ff7539ae4 Mon Sep 17 00:00:00 2001 From: Matthew Honnibal Date: Sat, 21 Feb 2015 11:06:58 -0500 Subject: [PATCH] * Add file to hold GoldParse class --- spacy/syntax/conll.pxd | 7 ++ spacy/syntax/conll.pyx | 150 +++++++++++++++++++++++++++++++++++++++++ 2 files changed, 157 insertions(+) create mode 100644 spacy/syntax/conll.pxd create mode 100644 spacy/syntax/conll.pyx diff --git a/spacy/syntax/conll.pxd b/spacy/syntax/conll.pxd new file mode 100644 index 000000000..4203f3a11 --- /dev/null +++ b/spacy/syntax/conll.pxd @@ -0,0 +1,7 @@ +from ..structs cimport TokenC + + +cdef class GoldParse: + cdef int* heads + cdef int* labels + cdef int heads_correct(self, TokenC* tokens, bint score_punct=?) except -1 diff --git a/spacy/syntax/conll.pyx b/spacy/syntax/conll.pyx new file mode 100644 index 000000000..8f005f83b --- /dev/null +++ b/spacy/syntax/conll.pyx @@ -0,0 +1,150 @@ +cdef class GoldParse: + def __init__(self): + pass + + cdef int heads_correct(self, TokenC* tokens, bint score_punct=False) except -1: + pass + +""" + @classmethod + def from_conll(cls, unicode sent_str): + ids = [] + words = [] + heads = [] + labels = [] + tags = [] + for i, line in enumerate(sent_str.split('\n')): + id_, word, pos_string, head_idx, label = _parse_line(line) + words.append(word) + if head_idx == -1: + head_idx = i + ids.append(id_) + heads.append(head_idx) + labels.append(label) + tags.append(pos_string) + text = ' '.join(words) + return cls(text, [words], ids, words, tags, heads, labels) + + @classmethod + def from_docparse(cls, unicode sent_str): + words = [] + heads = [] + labels = [] + tags = [] + ids = [] + lines = sent_str.strip().split('\n') + raw_text = lines.pop(0).strip() + tok_text = lines.pop(0).strip() + for i, line in enumerate(lines): + id_, word, pos_string, head_idx, label = _parse_line(line) + if label == 'root': + label = 'ROOT' + words.append(word) + if head_idx < 0: + head_idx = id_ + ids.append(id_) + heads.append(head_idx) + labels.append(label) + tags.append(pos_string) + tokenized = [sent_str.replace('', ' ').split(' ') + for sent_str in tok_text.split('')] + return cls(raw_text, tokenized, ids, words, tags, heads, labels) + + cdef int heads_correct(self, TokenC* tokens, bint score_punct=False) except -1: + pass + + def align_to_non_gold_tokens(self, tokens): + # TODO + tags = [] + heads = [] + labels = [] + orig_words = list(words) + missed = [] + for token in tokens: + while annot and token.idx > annot[0][0]: + miss_id, miss_tag, miss_head, miss_label = annot.pop(0) + miss_w = words.pop(0) + if not is_punct_label(miss_label): + missed.append(miss_w) + loss += 1 + if not annot: + tags.append(None) + heads.append(None) + labels.append(None) + continue + id_, tag, head, label = annot[0] + if token.idx == id_: + tags.append(tag) + heads.append(head) + labels.append(label) + annot.pop(0) + words.pop(0) + elif token.idx < id_: + tags.append(None) + heads.append(None) + labels.append(None) + else: + raise StandardError + return loss, tags, heads, labels + + +def is_punct_label(label): + return label == 'P' or label.lower() == 'punct' + + +def _map_indices_to_tokens(ids, heads): + mapped = [] + for head in heads: + if head not in ids: + mapped.append(None) + else: + mapped.append(ids.index(head)) + return mapped + + + +def _parse_line(line): + pieces = line.split() + if len(pieces) == 4: + return 0, pieces[0], pieces[1], int(pieces[2]) - 1, pieces[3] + else: + id_ = int(pieces[0]) + word = pieces[1] + pos = pieces[3] + head_idx = int(pieces[6]) + label = pieces[7] + return id_, word, pos, head_idx, label + + +# TODO +def evaluate(Language, dev_loc, model_dir, gold_preproc=False): + global loss + nlp = Language() + n_corr = 0 + pos_corr = 0 + n_tokens = 0 + total = 0 + skipped = 0 + loss = 0 + with codecs.open(dev_loc, 'r', 'utf8') as file_: + #paragraphs = read_tokenized_gold(file_) + paragraphs = read_docparse_gold(file_) + for tokens, tag_strs, heads, labels in iter_data(paragraphs, nlp.tokenizer, + gold_preproc=gold_preproc): + assert len(tokens) == len(labels) + nlp.tagger(tokens) + nlp.parser(tokens) + for i, token in enumerate(tokens): + pos_corr += token.tag_ == tag_strs[i] + n_tokens += 1 + if heads[i] is None: + skipped += 1 + continue + if is_punct_label(labels[i]): + continue + n_corr += token.head.i == heads[i] + total += 1 + print loss, skipped, (loss+skipped + total) + print pos_corr / n_tokens + return float(n_corr) / (total + loss) +"""