mirror of https://github.com/explosion/spaCy.git
Update docs [ci skip]
This commit is contained in:
parent
1c3bcfb488
commit
ef6cf3b276
|
@ -141,7 +141,7 @@ in your config and see validation errors if the argument values don't match.
|
|||
The following methods, attributes and commands are new in spaCy v3.0.
|
||||
|
||||
| Name | Description |
|
||||
| ------------------------------------------------------------------------------------------------------------------------ | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ |
|
||||
| ----------------------------------------------------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ |
|
||||
| [`Token.lex`](/api/token#attributes) | Access a token's [`Lexeme`](/api/lexeme). |
|
||||
| [`Language.select_pipes`](/api/language#select_pipes) | Contextmanager for enabling or disabling specific pipeline components for a block. |
|
||||
| [`Language.analyze_pipes`](/api/language#analyze_pipes) | [Analyze](/usage/processing-pipelines#analysis) components and their interdependencies. |
|
||||
|
@ -152,9 +152,7 @@ The following methods, attributes and commands are new in spaCy v3.0.
|
|||
| [`Language.config`](/api/language#config) | The [config](/usage/training#config) used to create the current `nlp` object. An instance of [`Config`](https://thinc.ai/docs/api-config#config) and can be saved to disk and used for training. |
|
||||
| [`Pipe.score`](/api/pipe#score) | Method on trainable pipeline components that returns a dictionary of evaluation scores. |
|
||||
| [`registry`](/api/top-level#registry) | Function registry to map functions to string names that can be referenced in [configs](/usage/training#config). |
|
||||
| [`init config`](/api/cli#init-config) | CLI command for initializing a [training config](/usage/training) file with the recommended settings. |
|
||||
| [`init fill-config`](/api/cli#init-fill-config) | CLI command for auto-filling a partial config with all defaults and missing values. |
|
||||
| [`debug config`](/api/cli#debug-config) | CLI command for debugging a [training config](/usage/training) file and showing validation errors. |
|
||||
| [`init config`](/api/cli#init-config) [`init fill-config`](/api/cli#init-fill-config) [`debug config`](/api/cli#debug-config) | CLI commands for initializing, auto-filling and debugging [training configs](/usage/training). |
|
||||
| [`project`](/api/cli#project) | Suite of CLI commands for cloning, running and managing [spaCy projects](/usage/projects). |
|
||||
|
||||
## Backwards Incompatibilities {#incompat}
|
||||
|
@ -420,15 +418,20 @@ $ python -m spacy convert ./training.json ./output
|
|||
#### Training config {#migrating-training-config}
|
||||
|
||||
The easiest way to get started with a training config is to use the
|
||||
[`init config`](/api/cli#init-config) command. You can start off with a blank
|
||||
config for a new model, copy the config from an existing model, or auto-fill a
|
||||
partial config like a starter config generated by our
|
||||
[quickstart widget](/usage/training#quickstart).
|
||||
[`init config`](/api/cli#init-config) command or the
|
||||
[quickstart widget](/usage/training#quickstart). You can define your
|
||||
requirements, and it will auto-generate a starter config with the best-matching
|
||||
default settings.
|
||||
|
||||
```bash
|
||||
python -m spacy init-config ./config.cfg --lang en --pipeline tagger,parser
|
||||
$ python -m spacy init config ./config.cfg --lang en --pipeline tagger,parser
|
||||
```
|
||||
|
||||
If you've exported a starter config from our
|
||||
[quickstart widget](/usage/training#quickstart), you can use the
|
||||
[`init fill-config`](/api/cli#init-fill-config) to fill it with all default
|
||||
values. You can then use the auto-generated `config.cfg` for training:
|
||||
|
||||
```diff
|
||||
### {wrap="true"}
|
||||
- python -m spacy train en ./output ./train.json ./dev.json --pipeline tagger,parser --cnn-window 1 --bilstm-depth 0
|
||||
|
|
Loading…
Reference in New Issue