* Improve example functionality, adding usage of word vectors

This commit is contained in:
Matthew Honnibal 2015-01-23 08:22:00 +11:00
parent 5ed8b2b98f
commit edd898947c
1 changed files with 132 additions and 40 deletions

View File

@ -7,16 +7,17 @@
spaCy: Industrial-strength NLP
==============================
spaCy is a library for industrial-strength text processing in Python and Cython.
spaCy is a new library for industrial-strength text processing in Python and Cython.
It is commercial open source software, with a dual (AGPL or commercial)
license.
If you're a small company doing NLP, spaCy might seem like a minor miracle.
I've been working on this full-time for the last six months, and am excited to
announce its beta release.
If you're a small company doing NLP, spaCy should seem like a minor miracle.
It's by far the fastest NLP software available. The full processing pipeline
completes in 7ms, including state-of-the-art part-of-speech tagging and
dependency parsing. All strings are mapped to integer IDs, tokens
are linked to word vectors and other lexical resources, and a range of useful
features are pre-calculated and cached.
completes in 7ms, including state-of-the-art tagging and parsing. All strings
are mapped to integer IDs, tokens are linked to embedded word representations,
and a range of useful features are pre-calculated and cached.
If none of that made any sense to you, here's the gist of it. Computers don't
understand text. This is unfortunate, because that's what the web almost entirely
@ -34,34 +35,31 @@ Example functionality
Let's say you're developing a proofreading tool, or possibly an IDE for
writers. You're convinced by Stephen King's advice that `adverbs are not your
friend <http://www.brainpickings.org/2013/03/13/stephen-king-on-adverbs/>`_, so
you want to **mark adverbs in red**. We'll use one of the examples he finds
you want to **highlight all adverbs**. We'll use one of the examples he finds
particularly egregious:
>>> import spacy.en
>>> from spacy.enums import ADVERB
>>> from spacy.postags import ADVERB
>>> # Load the pipeline, and call it with some text.
>>> nlp = spacy.en.English()
>>> tokens = nlp("Give it back, he pleaded abjectly, its mine.",
tag=True, parse=True)
>>> output = ''
>>> for tok in tokens:
... # Token.string preserves whitespace, making it easy to
... # reconstruct the original string.
... output += tok.string.upper() if tok.is_pos(ADVERB) else tok.string
... output += tok.string.upper() if tok.pos == ADVERB else tok.string
... output += tok.whitespace
>>> print(output)
Give it BACK, he pleaded ABJECTLY, its mine.
Easy enough --- but the problem is that we've also highlighted "back", when probably
we only wanted to highlight "abjectly". This is undoubtedly an adverb, but it's
not the sort of adverb King is talking about. This is a persistent problem when
dealing with linguistic categories: the prototypical examples, the ones whic
spring to your mind, are often not the most common cases.
we only wanted to highlight "abjectly". While "back" is undoubtedly an adverb,
we probably don't want to highlight it.
There are lots of ways we might refine our logic, depending on just what words
we want to flag. The simplest way to filter out adverbs like "back" and "not"
is by word frequency: these words are much more common than the manner adverbs
the style guides are worried about.
is by word frequency: these words are much more common than the prototypical
manner adverbs that the style guides are worried about.
The prob attribute of a Lexeme or Token object gives a log probability estimate
of the word, based on smoothed counts from a 3bn word corpus:
@ -77,37 +75,117 @@ So we can easily exclude the N most frequent words in English from our adverb
marker. Let's try N=1000 for now:
>>> import spacy.en
>>> from spacy.enums import ADVERB
>>> from spacy.postags import ADVERB
>>> nlp = spacy.en.English()
>>> # Find log probability of Nth most frequent word
>>> probs = [lex.prob for lex in nlp.vocab]
>>> is_adverb = lambda tok: tok.is_pos(ADVERB) and tok.prob < probs[-1000]
>>> is_adverb = lambda tok: tok.pos == ADVERB and tok.prob < probs[-1000]
>>> tokens = nlp("Give it back, he pleaded abjectly, its mine.",
tag=True, parse=True)
>>> print(''.join(tok.string.upper() if is_adverb(tok) else tok.string))
Give it back, he pleaded ABJECTLY, its mine.
There are lots of ways to refine the logic, depending on just what words we
want to flag. Let's define this narrowly, and only flag adverbs applied to
verbs of communication or perception:
There are lots of ways we could refine the logic, depending on just what words we
want to flag. Let's say we wanted to only flag adverbs that modified words
similar to "pleaded". This is easy to do, as spaCy loads a vector-space
representation for every word (by default, the vectors produced by
`Levy and Goldberg (2014)`_. Naturally, the vector is provided as a numpy
array:
>>> from spacy.enums import VERB, WN_V_COMMUNICATION, WN_V_COGNITION
>>> def is_say_verb(tok):
... return tok.is_pos(VERB) and (tok.check_flag(WN_V_COMMUNICATION) or
tok.check_flag(WN_V_COGNITION))
>>> print(''.join(tok.string.upper() if is_adverb(tok) and is_say_verb(tok.head)
else tok.string))
Give it back, he pleaded ABJECTLY, its mine.
>>> pleaded = tokens[8]
>>> pleaded.repvec.shape
(300,)
The two flags refer to the 45 top-level categories in the WordNet ontology.
spaCy stores membership in these categories as a bit set, because
words can have multiple senses. We only need one 64
bit flag variable per word in the vocabulary, so this useful data requires only
2.4mb of memory.
.. _Levy and Goldberg (2014): https://levyomer.wordpress.com/2014/04/25/dependency-based-word-embeddings/
We want to sort the words in our vocabulary by their similarity to "pleaded".
There are lots of ways to measure the similarity of two vectors. We'll use the
cosine metric:
>>> from numpy import dot
>>> from numpy.linalg import norm
>>> cosine = lambda v1, v2: dot(v1, v2) / (norm(v1), norm(v2))
>>> words = [w for w in nlp.vocab if w.is_lower and w.has_repvec]
>>> words.sort(key=lambda w: cosine(w, pleaded))
>>> words.reverse()
>>> print '1-20', ', '.join(w.orth_ for w in words[0:20])
1-20 pleaded, pled, plead, confessed, interceded, pleads, testified, conspired, motioned, demurred, countersued, remonstrated, begged, apologised, consented, acquiesced, petitioned, quarreled, appealed, pleading
>>> print '50-60', ', '.join(w.orth_ for w in words[50:60])
50-60 counselled, bragged, backtracked, caucused, refiled, dueled, mused, dissented, yearned, confesses
>>> print '100-110', ', '.join(w.orth_ for w in words[100:110])
cabled, ducked, sentenced, perjured, absconded, bargained, overstayed, clerked, confided, sympathizes
>>> print '1000-1010', ', '.join(w.orth_ for w in words[1000:1010])
scorned, baled, righted, requested, swindled, posited, firebombed, slimed, deferred, sagged
>>> print ', '.join(w.orth_ for w in words[50000:50010])
fb, ford, systems, puck, anglers, ik, tabloid, dirty, rims, artists
As you can see, the similarity model that these vectors give us is excellent
--- we're still getting meaningful results at 1000 words, off a single
prototype! The only problem is that the list really contains two clusters of
words: one associated with the legal meaning of "pleaded", and one for the more
general sense. Sorting out these clusters is an area of active research.
A simple work-around is to average the vectors of several words, and use that
as our target:
>>> say_verbs = [u'pleaded', u'confessed', u'remonstrated', u'begged',
u'bragged', u'confided', u'requested']
>>> say_vector = numpy.zeros(shape=(300,))
>>> for verb in say_verbs:
... say_vector += nlp.vocab[verb].repvec
>>> words.sort(key=lambda w: cosine(w.repvec, say_vector))
>>> words.reverse()
>>> print '1-20', ', '.join(w.orth_ for w in words[0:20])
1-20 bragged, remonstrated, enquired, demurred, sighed, mused, intimated, retorted, entreated, motioned, ranted, confided, countersued, gestured, implored, interceded, muttered, marvelled, bickered, despaired
50-60 flaunted, quarrelled, ingratiated, vouched, agonized, apologised, lunched, joked, chafed, schemed
>>> print '1000-1010', ', '.join(w.orth_ for w in words[1000:1010])
1000-1010 hoarded, waded, ensnared, clamoring, abided, deploring, shriveled, endeared, rethought, berate
These definitely look like words that King might scold a writer for attaching
adverbs to. Recall that our previous adverb highlighting function looked like
this:
>>> import spacy.en
>>> from spacy.postags import ADVERB
>>> # Load the pipeline, and call it with some text.
>>> nlp = spacy.en.English()
>>> tokens = nlp("Give it back, he pleaded abjectly, its mine.",
tag=True, parse=True)
>>> output = ''
>>> for tok in tokens:
... output += tok.string.upper() if tok.pos == ADVERB else tok.string
... output += tok.whitespace
>>> print(output)
Give it BACK, he pleaded ABJECTLY, its mine.
We wanted to refine the logic so that only adverbs modifying evocative verbs
of communication, like "pleaded", were highlighted. We've now built a vector that
represents that type of word, so now we can highlight adverbs based on very
subtle logic, honing in on adverbs that seem the most stylistically
problematic, given our starting assumptions:
>>> import numpy
>>> from numpy import dot
>>> from numpy.linalg import norm
>>> import spacy.en
>>> from spacy.postags import ADVERB, VERB
>>> def is_bad_adverb(token, target_verb, tol):
... if token.pos != ADVERB
... return False
... elif toke.head.pos != VERB:
... return False
... elif cosine(token.head.repvec, target_verb) < tol:
... return False
... else:
... return True
This example was somewhat contrived --- and, truth be told, I've never really
bought the idea that adverbs were a grave stylistic sin. But hopefully it got
the message across: the state-of-the-art NLP technologies are very powerful.
spaCy gives you easy and efficient access to them, which lets you build all
sorts of use products and features that were previously impossible.
spaCy packs all sorts of other goodies into its lexicon.
Words are mapped to one these rich lexical types immediately, during
tokenization --- and spaCy's tokenizer is *fast*.
Efficiency
----------
@ -137,9 +215,10 @@ This normally takes a few iterations, and what you come up with will usually be
brittle and difficult to reason about.
spaCy's parser is faster than most taggers, and its tokenizer is fast enough
for truly web-scale processing. And the tokenizer doesn't just give you a list
for any workload. And the tokenizer doesn't just give you a list
of strings. A spaCy token is a pointer to a Lexeme struct, from which you can
access a wide range of pre-computed features.
access a wide range of pre-computed features, including embedded word
representations.
.. I wrote spaCy because I think existing commercial NLP engines are crap.
Alchemy API are a typical example. Check out this part of their terms of
@ -161,7 +240,9 @@ access a wide range of pre-computed features.
Accuracy
--------
.. table:: Accuracy comparison, on the standard benchmark data from the Wall Street Journal. See `Benchmarks`_ for details.
.. table:: Accuracy comparison, on the standard benchmark data from the Wall Street Journal.
.. See `Benchmarks`_ for details.
+--------------+----------+------------+
| System | POS acc. | Parse acc. |
@ -172,9 +253,20 @@ Accuracy
+--------------+----------+------------+
| ZPar | 97.3 | 92.9 |
+--------------+----------+------------+
| Redshift | 97.3 | 93.5 |
+--------------+----------+------------+
| NLTK | 94.3 | n/a |
+--------------+----------+------------+
The table above compares spaCy to some of the current state-of-the-art systems,
on the standard evaluation from the Wall Street Journal, given gold-standard
sentence boundaries and tokenization. I'm in the process of completing a more
realistic evaluation on web text.
spaCy's parser offers a better speed/accuracy trade-off than any published
system: its accuracy is within 1% of the current state-of-the-art, and it's
seven times faster than the 2014 CoreNLP neural network parser, which is the
previous fastest parser that I'm aware of.
.. toctree::