diff --git a/examples/experiments/onto-joint/defaults.cfg b/examples/experiments/onto-joint/defaults.cfg index 0e0d4d4c3..f456e3fbe 100644 --- a/examples/experiments/onto-joint/defaults.cfg +++ b/examples/experiments/onto-joint/defaults.cfg @@ -1,37 +1,45 @@ -# Training hyper-parameters and additional features. -[training] -# Whether to train on sequences with 'gold standard' sentence boundaries -# and tokens. If you set this to true, take care to ensure your run-time -# data is passed in sentence-by-sentence via some prior preprocessing. -gold_preproc = false -# Limitations on training document length or number of examples. -max_length = 5000 -limit = 0 -# Data augmentation -orth_variant_level = 0.0 -dropout = 0.1 -# Controls early-stopping. 0 or -1 mean unlimited. -patience = 1600 -max_epochs = 0 -max_steps = 20000 -eval_frequency = 200 -# Other settings -seed = 0 -accumulate_gradient = 1 -use_pytorch_for_gpu_memory = false -# Control how scores are printed and checkpoints are evaluated. -eval_batch_size = 128 -score_weights = {"dep_las": 0.4, "ents_f": 0.4, "tag_acc": 0.2} +[paths] +train = "" +dev = "" +raw = null init_tok2vec = null -discard_oversize = false -batch_by = "words" -raw_text = null -tag_map = null -vectors = null -base_model = null -morph_rules = null -[training.batch_size] +[system] +seed = 0 +use_pytorch_for_gpu_memory = false + +[training] +seed = ${system:seed} +dropout = 0.1 +init_tok2vec = ${paths:init_tok2vec} +vectors = null +accumulate_gradient = 1 +max_steps = 0 +max_epochs = 0 +patience = 10000 +eval_frequency = 200 +score_weights = {"dep_las": 0.4, "ents_f": 0.4, "tag_acc": 0.2} + +[training.train_corpus] +@readers = "spacy.Corpus.v1" +path = ${paths:train} +gold_preproc = true +max_length = 0 +limit = 0 + +[training.dev_corpus] +@readers = "spacy.Corpus.v1" +path = ${paths:dev} +gold_preproc = ${training.read_train:gold_preproc} +max_length = 0 +limit = 0 + +[training.batcher] +@batchers = "batch_by_words.v1" +discard_oversize = false +tolerance = 0.2 + +[training.batcher.size] @schedules = "compounding.v1" start = 100 stop = 1000 diff --git a/examples/experiments/ptb-joint-pos-dep/defaults.cfg b/examples/experiments/ptb-joint-pos-dep/defaults.cfg index eed76cb7b..fc471ac43 100644 --- a/examples/experiments/ptb-joint-pos-dep/defaults.cfg +++ b/examples/experiments/ptb-joint-pos-dep/defaults.cfg @@ -1,30 +1,45 @@ +[paths] +train = "" +dev = "" +raw = null +init_tok2vec = null + +[system] +seed = 0 +use_pytorch_for_gpu_memory = false + [training] +seed = ${system:seed} +dropout = 0.2 +init_tok2vec = ${paths:init_tok2vec} +vectors = null +accumulate_gradient = 1 max_steps = 0 +max_epochs = 0 patience = 10000 eval_frequency = 200 -dropout = 0.2 -init_tok2vec = null -vectors = null -max_epochs = 100 -orth_variant_level = 0.0 +score_weights = {"dep_las": 0.8, "tag_acc": 0.2} + +[training.read_train] +@readers = "spacy.Corpus.v1" +path = ${paths:train} gold_preproc = true max_length = 0 -scores = ["tag_acc", "dep_uas", "dep_las", "speed"] -score_weights = {"dep_las": 0.8, "tag_acc": 0.2} limit = 0 -seed = 0 -accumulate_gradient = 1 + +[training.read_dev] +@readers = "spacy.Corpus.v1" +path = ${paths:dev} +gold_preproc = ${training.read_train:gold_preproc} +max_length = 0 +limit = 0 + +[training.batcher] +@batchers = "batch_by_words.v1" discard_oversize = false -raw_text = null -tag_map = null -morph_rules = null -base_model = null +tolerance = 0.2 -eval_batch_size = 128 -use_pytorch_for_gpu_memory = false -batch_by = "words" - -[training.batch_size] +[training.batcher.size] @schedules = "compounding.v1" start = 100 stop = 1000 diff --git a/spacy/cli/debug_data.py b/spacy/cli/debug_data.py index 0701992da..cf3822a59 100644 --- a/spacy/cli/debug_data.py +++ b/spacy/cli/debug_data.py @@ -162,13 +162,12 @@ def debug_data( loading_train_error_message = "" loading_dev_error_message = "" with msg.loading("Loading corpus..."): - corpus = Corpus(train_path, dev_path) try: - train_dataset = list(corpus.train_dataset(nlp)) + train_dataset = list(Corpus(train_path)(nlp)) except ValueError as e: loading_train_error_message = f"Training data cannot be loaded: {e}" try: - dev_dataset = list(corpus.dev_dataset(nlp)) + dev_dataset = list(Corpus(dev_path)(nlp)) except ValueError as e: loading_dev_error_message = f"Development data cannot be loaded: {e}" if loading_train_error_message or loading_dev_error_message: diff --git a/spacy/cli/evaluate.py b/spacy/cli/evaluate.py index ee1be57a3..19ff78989 100644 --- a/spacy/cli/evaluate.py +++ b/spacy/cli/evaluate.py @@ -64,9 +64,9 @@ def evaluate( msg.fail("Evaluation data not found", data_path, exits=1) if displacy_path and not displacy_path.exists(): msg.fail("Visualization output directory not found", displacy_path, exits=1) - corpus = Corpus(data_path, data_path) + corpus = Corpus(data_path, gold_preproc=gold_preproc) nlp = util.load_model(model) - dev_dataset = list(corpus.dev_dataset(nlp, gold_preproc=gold_preproc)) + dev_dataset = list(corpus(nlp)) scores = nlp.evaluate(dev_dataset, verbose=False) metrics = { "TOK": "token_acc", diff --git a/spacy/cli/train.py b/spacy/cli/train.py index 09f64bd09..ca2bd04ab 100644 --- a/spacy/cli/train.py +++ b/spacy/cli/train.py @@ -12,9 +12,9 @@ import typer from ._util import app, Arg, Opt, parse_config_overrides, show_validation_error from ._util import import_code -from ..gold import Corpus, Example from ..language import Language from .. import util +from ..gold.example import Example from ..errors import Errors @@ -28,8 +28,6 @@ from ..ml import models # noqa: F401 def train_cli( # fmt: off ctx: typer.Context, # This is only used to read additional arguments - train_path: Path = Arg(..., help="Location of training data", exists=True), - dev_path: Path = Arg(..., help="Location of development data", exists=True), config_path: Path = Arg(..., help="Path to config file", exists=True), output_path: Optional[Path] = Opt(None, "--output", "--output-path", "-o", help="Output directory to store model in"), code_path: Optional[Path] = Opt(None, "--code-path", "-c", help="Path to Python file with additional code (registered functions) to be imported"), @@ -51,12 +49,11 @@ def train_cli( referenced in the config. """ util.set_env_log(verbose) - verify_cli_args(train_path, dev_path, config_path, output_path) + verify_cli_args(config_path, output_path) overrides = parse_config_overrides(ctx.args) import_code(code_path) train( config_path, - {"train": train_path, "dev": dev_path}, output_path=output_path, config_overrides=overrides, use_gpu=use_gpu, @@ -66,8 +63,6 @@ def train_cli( def train( config_path: Path, - data_paths: Dict[str, Path], - raw_text: Optional[Path] = None, output_path: Optional[Path] = None, config_overrides: Dict[str, Any] = {}, use_gpu: int = -1, @@ -85,36 +80,24 @@ def train( fix_random_seed(config["training"]["seed"]) with show_validation_error(config_path): nlp, config = util.load_model_from_config(config, overrides=config_overrides) - if config["training"]["base_model"]: - # TODO: do something to check base_nlp against regular nlp described in config? - # If everything matches it will look something like: - # base_nlp = util.load_model(config["training"]["base_model"]) - # nlp = base_nlp - raise NotImplementedError("base_model not supported yet.") if config["training"]["vectors"] is not None: util.load_vectors_into_model(nlp, config["training"]["vectors"]) verify_config(nlp) raw_text, tag_map, morph_rules, weights_data = load_from_paths(config) - if config["training"]["use_pytorch_for_gpu_memory"]: + if config.get("system", {}).get("use_pytorch_for_gpu_memory"): # It feels kind of weird to not have a default for this. use_pytorch_for_gpu_memory() - training = config["training"] - optimizer = training["optimizer"] - limit = training["limit"] - corpus = Corpus(data_paths["train"], data_paths["dev"], limit=limit) + T_cfg = config["training"] + optimizer = T_cfg["optimizer"] + train_corpus = T_cfg["train_corpus"] + dev_corpus = T_cfg["dev_corpus"] + batcher = T_cfg["batcher"] if resume_training: msg.info("Resuming training") nlp.resume_training() else: msg.info(f"Initializing the nlp pipeline: {nlp.pipe_names}") - train_examples = corpus.train_dataset( - nlp, - shuffle=False, - gold_preproc=training["gold_preproc"], - max_length=training["max_length"], - ) - train_examples = list(train_examples) - nlp.begin_training(lambda: train_examples) + nlp.begin_training(lambda: train_corpus(nlp)) if tag_map: # Replace tag map with provided mapping @@ -140,38 +123,35 @@ def train( msg.fail(err, exits=1) tok2vec.from_bytes(weights_data) - msg.info("Loading training corpus") - train_batches = create_train_batches(nlp, corpus, training) - evaluate = create_evaluation_callback(nlp, optimizer, corpus, training) - # Create iterator, which yields out info after each optimization step. msg.info("Start training") + score_weights = T_cfg["score_weights"] training_step_iterator = train_while_improving( nlp, optimizer, - train_batches, - evaluate, - dropout=training["dropout"], - accumulate_gradient=training["accumulate_gradient"], - patience=training["patience"], - max_steps=training["max_steps"], - eval_frequency=training["eval_frequency"], - raw_text=raw_text, + create_train_batches(train_corpus(nlp), batcher, T_cfg["max_epochs"]), + create_evaluation_callback(nlp, dev_corpus, score_weights), + dropout=T_cfg["dropout"], + accumulate_gradient=T_cfg["accumulate_gradient"], + patience=T_cfg["patience"], + max_steps=T_cfg["max_steps"], + eval_frequency=T_cfg["eval_frequency"], + raw_text=None ) msg.info(f"Training. Initial learn rate: {optimizer.learn_rate}") - print_row = setup_printer(training, nlp) + print_row = setup_printer(T_cfg, nlp) try: - progress = tqdm.tqdm(total=training["eval_frequency"], leave=False) + progress = tqdm.tqdm(total=T_cfg["eval_frequency"], leave=False) for batch, info, is_best_checkpoint in training_step_iterator: progress.update(1) if is_best_checkpoint is not None: progress.close() print_row(info) if is_best_checkpoint and output_path is not None: - update_meta(training, nlp, info) + update_meta(T_cfg, nlp, info) nlp.to_disk(output_path / "model-best") - progress = tqdm.tqdm(total=training["eval_frequency"], leave=False) + progress = tqdm.tqdm(total=T_cfg["eval_frequency"], leave=False) except Exception as e: if output_path is not None: msg.warn( @@ -192,70 +172,34 @@ def train( msg.good(f"Saved model to output directory {final_model_path}") -def create_train_batches( - nlp: Language, corpus: Corpus, cfg: Union[Config, Dict[str, Any]] -): - max_epochs = cfg["max_epochs"] - train_examples = list( - corpus.train_dataset( - nlp, - shuffle=True, - gold_preproc=cfg["gold_preproc"], - max_length=cfg["max_length"], - ) - ) - epoch = 0 - batch_strategy = cfg["batch_by"] - while True: - if len(train_examples) == 0: - raise ValueError(Errors.E988) - epoch += 1 - if batch_strategy == "padded": - batches = util.minibatch_by_padded_size( - train_examples, - size=cfg["batch_size"], - buffer=256, - discard_oversize=cfg["discard_oversize"], - ) - elif batch_strategy == "words": - batches = util.minibatch_by_words( - train_examples, - size=cfg["batch_size"], - discard_oversize=cfg["discard_oversize"], - ) - else: - batches = util.minibatch(train_examples, size=cfg["batch_size"]) - # make sure the minibatch_by_words result is not empty, or we'll have an infinite training loop - try: - first = next(batches) - yield epoch, first - except StopIteration: - raise ValueError(Errors.E986) - for batch in batches: +def create_train_batches(iterator, batcher, max_epochs: int): + epoch = 1 + examples = [] + # Stream the first epoch, so we start training faster and support + # infinite streams. + for batch in batcher(iterator): + yield epoch, batch + if max_epochs != 1: + examples.extend(batch) + if not examples: + # Raise error if no data + raise ValueError(Errors.E986) + while epoch != max_epochs: + random.shuffle(examples) + for batch in batcher(examples): yield epoch, batch - if max_epochs >= 1 and epoch >= max_epochs: - break - random.shuffle(train_examples) + epoch += 1 def create_evaluation_callback( nlp: Language, - optimizer: Optimizer, - corpus: Corpus, - cfg: Union[Config, Dict[str, Any]], + dev_corpus: Callable, + weights: Dict[str, float], ) -> Callable[[], Tuple[float, Dict[str, float]]]: def evaluate() -> Tuple[float, Dict[str, float]]: - dev_examples = corpus.dev_dataset(nlp, gold_preproc=cfg["gold_preproc"]) - dev_examples = list(dev_examples) - n_words = sum(len(ex.predicted) for ex in dev_examples) - batch_size = cfg["eval_batch_size"] - if optimizer.averages: - with nlp.use_params(optimizer.averages): - scores = nlp.evaluate(dev_examples, batch_size=batch_size) - else: - scores = nlp.evaluate(dev_examples, batch_size=batch_size) + dev_examples = list(dev_corpus(nlp)) + scores = nlp.evaluate(dev_examples) # Calculate a weighted sum based on score_weights for the main score - weights = cfg["score_weights"] try: weighted_score = sum(scores[s] * weights.get(s, 0.0) for s in weights) except KeyError as e: @@ -348,7 +292,11 @@ def train_while_improving( proc.model.finish_update(optimizer) optimizer.step_schedules() if not (step % eval_frequency): - score, other_scores = evaluate() + if optimizer.averages: + with nlp.use_params(optimizer.averages): + score, other_scores = evaluate() + else: + score, other_scores = evaluate() results.append((score, step)) is_best_checkpoint = score == max(results)[0] else: @@ -459,17 +407,7 @@ def load_from_paths( msg.fail("Can't find raw text", raw_text, exits=1) raw_text = list(srsly.read_jsonl(config["training"]["raw_text"])) tag_map = {} - tag_map_path = util.ensure_path(config["training"]["tag_map"]) - if tag_map_path is not None: - if not tag_map_path.exists(): - msg.fail("Can't find tag map path", tag_map_path, exits=1) - tag_map = srsly.read_json(config["training"]["tag_map"]) morph_rules = {} - morph_rules_path = util.ensure_path(config["training"]["morph_rules"]) - if morph_rules_path is not None: - if not morph_rules_path.exists(): - msg.fail("Can't find tag map path", morph_rules_path, exits=1) - morph_rules = srsly.read_json(config["training"]["morph_rules"]) weights_data = None init_tok2vec = util.ensure_path(config["training"]["init_tok2vec"]) if init_tok2vec is not None: @@ -481,18 +419,12 @@ def load_from_paths( def verify_cli_args( - train_path: Path, - dev_path: Path, config_path: Path, output_path: Optional[Path] = None, ) -> None: # Make sure all files and paths exists if they are needed if not config_path or not config_path.exists(): msg.fail("Config file not found", config_path, exits=1) - if not train_path or not train_path.exists(): - msg.fail("Training data not found", train_path, exits=1) - if not dev_path or not dev_path.exists(): - msg.fail("Development data not found", dev_path, exits=1) if output_path is not None: if not output_path.exists(): output_path.mkdir() diff --git a/spacy/default_config.cfg b/spacy/default_config.cfg index fead996ba..1c56810e3 100644 --- a/spacy/default_config.cfg +++ b/spacy/default_config.cfg @@ -1,3 +1,13 @@ +[paths] +train = "" +dev = "" +raw = null +init_tok2vec = null + +[system] +seed = 0 +use_pytorch_for_gpu_memory = false + [nlp] lang = null pipeline = [] @@ -13,38 +23,55 @@ load_vocab_data = true # Training hyper-parameters and additional features. [training] -# Whether to train on sequences with 'gold standard' sentence boundaries -# and tokens. If you set this to true, take care to ensure your run-time -# data is passed in sentence-by-sentence via some prior preprocessing. -gold_preproc = false -# Limitations on training document length or number of examples. -max_length = 5000 -limit = 0 -# Data augmentation -orth_variant_level = 0.0 +seed = ${system:seed} dropout = 0.1 +accumulate_gradient = 1 +# Extra resources for transfer-learning or pseudo-rehearsal +init_tok2vec = ${paths:init_tok2vec} +raw_text = ${paths:raw} +vectors = null # Controls early-stopping. 0 or -1 mean unlimited. patience = 1600 max_epochs = 0 max_steps = 20000 eval_frequency = 200 -eval_batch_size = 128 -# Other settings -seed = 0 -accumulate_gradient = 1 -use_pytorch_for_gpu_memory = false # Control how scores are printed and checkpoints are evaluated. score_weights = {} -# These settings are invalid for the transformer models. -init_tok2vec = null + +[training.train_corpus] +@readers = "spacy.Corpus.v1" +path = ${paths:train} +# Whether to train on sequences with 'gold standard' sentence boundaries +# and tokens. If you set this to true, take care to ensure your run-time +# data is passed in sentence-by-sentence via some prior preprocessing. +gold_preproc = false +# Limitations on training document length +max_length = 2000 +# Limitation on number of training examples +limit = 0 + +[training.dev_corpus] +@readers = "spacy.Corpus.v1" +path = ${paths:dev} +# Whether to train on sequences with 'gold standard' sentence boundaries +# and tokens. If you set this to true, take care to ensure your run-time +# data is passed in sentence-by-sentence via some prior preprocessing. +gold_preproc = false +# Limitations on training document length +max_length = 2000 +# Limitation on number of training examples +limit = 0 + +[training.batcher] +@batchers = "batch_by_words.v1" discard_oversize = false -raw_text = null -tag_map = null -morph_rules = null -base_model = null -vectors = null -batch_by = "words" -batch_size = 1000 +tolerance = 0.2 + +[training.batcher.size] +@schedules = "compounding.v1" +start = 100 +stop = 1000 +compound = 1.001 [training.optimizer] @optimizers = "Adam.v1" @@ -69,8 +96,8 @@ max_length = 500 dropout = 0.2 n_save_every = null batch_size = 3000 -seed = ${training:seed} -use_pytorch_for_gpu_memory = ${training:use_pytorch_for_gpu_memory} +seed = ${system:seed} +use_pytorch_for_gpu_memory = ${system:use_pytorch_for_gpu_memory} tok2vec_model = "components.tok2vec.model" [pretraining.objective] diff --git a/spacy/gold/__init__.py b/spacy/gold/__init__.py index c8b5fc44d..2713732b2 100644 --- a/spacy/gold/__init__.py +++ b/spacy/gold/__init__.py @@ -9,3 +9,6 @@ from .iob_utils import tags_to_entities from .gold_io import docs_to_json from .gold_io import read_json_file + + +from .batchers import minibatch_by_padded_size, minibatch_by_words diff --git a/spacy/gold/batchers.py b/spacy/gold/batchers.py new file mode 100644 index 000000000..99f6c7d8d --- /dev/null +++ b/spacy/gold/batchers.py @@ -0,0 +1,172 @@ +from typing import Union, Iterator, Iterable, Sequence, TypeVar, List, Callable +from typing import Optional, Any +from functools import partial +import itertools + +from .example import Example +from ..util import registry, minibatch + + +Sizing = Union[Iterable[int], int] +ItemT = TypeVar("ItemT") +BatcherT = Callable[[Iterable[ItemT]], Iterable[List[ItemT]]] + + +@registry.batchers("batch_by_padded.v1") +def configure_minibatch_by_padded_size( + *, + size: Sizing, + buffer: int, + discard_oversize: bool, + get_length: Optional[Callable[[ItemT], int]] = None +) -> BatcherT: + # Avoid displacing optional values from the underlying function. + optionals = {"get_length": get_length} if get_length is not None else {} + return partial( + minibatch_by_padded_size, + size=size, + buffer=buffer, + discard_oversize=discard_oversize, + **optionals + ) + + +@registry.batchers("batch_by_words.v1") +def configure_minibatch_by_words( + *, + size: Sizing, + tolerance: float, + discard_oversize: bool, + get_length: Optional[Callable[[ItemT], int]] = None +) -> BatcherT: + optionals = {"get_length": get_length} if get_length is not None else {} + return partial( + minibatch_by_words, + size=size, + discard_oversize=discard_oversize, + **optionals + ) + + +@registry.batchers("batch_by_sequence.v1") +def configure_minibatch(size: Sizing, get_length=None) -> BatcherT: + optionals = ({"get_length": get_length} if get_length is not None else {}) + return partial(minibatch, size=size, **optionals) + + +def minibatch_by_padded_size( + docs: Iterator["Doc"], + size: Sizing, + buffer: int = 256, + discard_oversize: bool = False, + get_length: Callable = len, +) -> Iterator[Iterator["Doc"]]: + if isinstance(size, int): + size_ = itertools.repeat(size) + else: + size_ = size + for outer_batch in minibatch(docs, size=buffer): + outer_batch = list(outer_batch) + target_size = next(size_) + for indices in _batch_by_length(outer_batch, target_size, get_length): + subbatch = [outer_batch[i] for i in indices] + padded_size = max(len(seq) for seq in subbatch) * len(subbatch) + if discard_oversize and padded_size >= target_size: + pass + else: + yield subbatch + + +def minibatch_by_words( + docs, size, tolerance=0.2, discard_oversize=False, get_length=len +): + """Create minibatches of roughly a given number of words. If any examples + are longer than the specified batch length, they will appear in a batch by + themselves, or be discarded if discard_oversize=True. + The argument 'docs' can be a list of strings, Doc's or Example's. """ + if isinstance(size, int): + size_ = itertools.repeat(size) + elif isinstance(size, List): + size_ = iter(size) + else: + size_ = size + target_size = next(size_) + tol_size = target_size * tolerance + batch = [] + overflow = [] + batch_size = 0 + overflow_size = 0 + for doc in docs: + n_words = get_length(doc) + # if the current example exceeds the maximum batch size, it is returned separately + # but only if discard_oversize=False. + if n_words > target_size + tol_size: + if not discard_oversize: + yield [doc] + # add the example to the current batch if there's no overflow yet and it still fits + elif overflow_size == 0 and (batch_size + n_words) <= target_size: + batch.append(doc) + batch_size += n_words + # add the example to the overflow buffer if it fits in the tolerance margin + elif (batch_size + overflow_size + n_words) <= (target_size + tol_size): + overflow.append(doc) + overflow_size += n_words + # yield the previous batch and start a new one. The new one gets the overflow examples. + else: + if batch: + yield batch + target_size = next(size_) + tol_size = target_size * tolerance + batch = overflow + batch_size = overflow_size + overflow = [] + overflow_size = 0 + # this example still fits + if (batch_size + n_words) <= target_size: + batch.append(doc) + batch_size += n_words + # this example fits in overflow + elif (batch_size + n_words) <= (target_size + tol_size): + overflow.append(doc) + overflow_size += n_words + # this example does not fit with the previous overflow: start another new batch + else: + if batch: + yield batch + target_size = next(size_) + tol_size = target_size * tolerance + batch = [doc] + batch_size = n_words + batch.extend(overflow) + if batch: + yield batch + + +def _batch_by_length( + seqs: Sequence[Any], max_words: int, get_length=len +) -> List[List[Any]]: + """Given a list of sequences, return a batched list of indices into the + list, where the batches are grouped by length, in descending order. + + Batches may be at most max_words in size, defined as max sequence length * size. + """ + # Use negative index so we can get sort by position ascending. + lengths_indices = [(get_length(seq), i) for i, seq in enumerate(seqs)] + lengths_indices.sort() + batches = [] + batch = [] + for length, i in lengths_indices: + if not batch: + batch.append(i) + elif length * (len(batch) + 1) <= max_words: + batch.append(i) + else: + batches.append(batch) + batch = [i] + if batch: + batches.append(batch) + # Check lengths match + assert sum(len(b) for b in batches) == len(seqs) + batches = [list(sorted(batch)) for batch in batches] + batches.reverse() + return batches diff --git a/spacy/gold/corpus.py b/spacy/gold/corpus.py index d23f70bee..411d684e6 100644 --- a/spacy/gold/corpus.py +++ b/spacy/gold/corpus.py @@ -1,4 +1,4 @@ -from typing import Union, List, Iterable, Iterator, TYPE_CHECKING +from typing import Union, List, Iterable, Iterator, TYPE_CHECKING, Callable, Tuple from pathlib import Path import random @@ -12,26 +12,38 @@ if TYPE_CHECKING: from ..language import Language # noqa: F401 +@util.registry.readers("spacy.Corpus.v1") +def create_docbin_reader( + path: Path, gold_preproc: bool, max_length: int = 0, limit: int = 0 +) -> Callable[["Language"], Iterable[Example]]: + return Corpus(path, gold_preproc=gold_preproc, max_length=max_length, limit=limit) + + class Corpus: - """An annotated corpus, reading train and dev datasets from - the DocBin (.spacy) format. + """Iterate Example objects from a file or directory of DocBin (.spacy) + formated data files. + + path (Path): The directory or filename to read from. + gold_preproc (bool): Whether to set up the Example object with gold-standard + sentences and tokens for the predictions. Gold preprocessing helps + the annotations align to the tokenization, and may result in sequences + of more consistent length. However, it may reduce run-time accuracy due + to train/test skew. Defaults to False. + max_length (int): Maximum document length. Longer documents will be + split into sentences, if sentence boundaries are available. Defaults to + 0, which indicates no limit. + limit (int): Limit corpus to a subset of examples, e.g. for debugging. + Defaults to 0, which indicates no limit. DOCS: https://spacy.io/api/corpus """ def __init__( - self, train_loc: Union[str, Path], dev_loc: Union[str, Path], limit: int = 0 + self, path, *, limit: int = 0, gold_preproc: bool = False, max_length: bool = False, ) -> None: - """Create a Corpus. - - train (str / Path): File or directory of training data. - dev (str / Path): File or directory of development data. - limit (int): Max. number of examples returned. - - DOCS: https://spacy.io/api/corpus#init - """ - self.train_loc = train_loc - self.dev_loc = dev_loc + self.path = util.ensure_path(path) + self.gold_preproc = gold_preproc + self.max_length = max_length self.limit = limit @staticmethod @@ -54,6 +66,22 @@ class Corpus: locs.append(path) return locs + def __call__(self, nlp: "Language") -> Iterator[Example]: + """Yield examples from the data. + + nlp (Language): The current nlp object. + loc (Path): The file or directory to read from. + YIELDS (Example): The examples. + + DOCS: https://spacy.io/api/corpus#call + """ + ref_docs = self.read_docbin(nlp.vocab, self.walk_corpus(self.path)) + if self.gold_preproc: + examples = self.make_examples_gold_preproc(nlp, ref_docs) + else: + examples = self.make_examples(nlp, ref_docs, self.max_length) + yield from examples + def _make_example( self, nlp: "Language", reference: Doc, gold_preproc: bool ) -> Example: @@ -114,68 +142,3 @@ class Corpus: i += 1 if self.limit >= 1 and i >= self.limit: break - - def count_train(self, nlp: "Language") -> int: - """Returns count of words in train examples. - - nlp (Language): The current nlp. object. - RETURNS (int): The word count. - - DOCS: https://spacy.io/api/corpus#count_train - """ - n = 0 - i = 0 - for example in self.train_dataset(nlp): - n += len(example.predicted) - if self.limit >= 0 and i >= self.limit: - break - i += 1 - return n - - def train_dataset( - self, - nlp: "Language", - *, - shuffle: bool = True, - gold_preproc: bool = False, - max_length: int = 0 - ) -> Iterator[Example]: - """Yield examples from the training data. - - nlp (Language): The current nlp object. - shuffle (bool): Whether to shuffle the examples. - gold_preproc (bool): Whether to train on gold-standard sentences and tokens. - max_length (int): Maximum document length. Longer documents will be - split into sentences, if sentence boundaries are available. 0 for - no limit. - YIELDS (Example): The examples. - - DOCS: https://spacy.io/api/corpus#train_dataset - """ - ref_docs = self.read_docbin(nlp.vocab, self.walk_corpus(self.train_loc)) - if gold_preproc: - examples = self.make_examples_gold_preproc(nlp, ref_docs) - else: - examples = self.make_examples(nlp, ref_docs, max_length) - if shuffle: - examples = list(examples) - random.shuffle(examples) - yield from examples - - def dev_dataset( - self, nlp: "Language", *, gold_preproc: bool = False - ) -> Iterator[Example]: - """Yield examples from the development data. - - nlp (Language): The current nlp object. - gold_preproc (bool): Whether to train on gold-standard sentences and tokens. - YIELDS (Example): The examples. - - DOCS: https://spacy.io/api/corpus#dev_dataset - """ - ref_docs = self.read_docbin(nlp.vocab, self.walk_corpus(self.dev_loc)) - if gold_preproc: - examples = self.make_examples_gold_preproc(nlp, ref_docs) - else: - examples = self.make_examples(nlp, ref_docs, max_length=0) - yield from examples diff --git a/spacy/schemas.py b/spacy/schemas.py index 971d283e2..413daed7f 100644 --- a/spacy/schemas.py +++ b/spacy/schemas.py @@ -1,13 +1,18 @@ from typing import Dict, List, Union, Optional, Sequence, Any, Callable, Type +from typing import Iterable, TypeVar from enum import Enum from pydantic import BaseModel, Field, ValidationError, validator from pydantic import StrictStr, StrictInt, StrictFloat, StrictBool from pydantic import root_validator from collections import defaultdict from thinc.api import Optimizer +from pathlib import Path from .attrs import NAMES +ItemT = TypeVar("ItemT") +Batcher = Callable[[Iterable[ItemT]], Iterable[List[ItemT]]] + def validate(schema: Type[BaseModel], obj: Dict[str, Any]) -> List[str]: """Validate data against a given pydantic schema. @@ -178,32 +183,24 @@ class ModelMetaSchema(BaseModel): # check that against this schema in the test suite to make sure it's always # up to date. +Reader = Callable[["Language", str], Iterable["Example"]] class ConfigSchemaTraining(BaseModel): # fmt: off - base_model: Optional[StrictStr] = Field(..., title="The base model to use") vectors: Optional[StrictStr] = Field(..., title="Path to vectors") - gold_preproc: StrictBool = Field(..., title="Whether to train on gold-standard sentences and tokens") - max_length: StrictInt = Field(..., title="Maximum length of examples (longer examples are divided into sentences if possible)") - limit: StrictInt = Field(..., title="Number of examples to use (0 for all)") - orth_variant_level: StrictFloat = Field(..., title="Orth variants for data augmentation") + train_corpus: Reader = Field(..., title="Reader for the training data") + dev_corpus: Reader = Field(..., title="Reader for the dev data") + batcher: Batcher = Field(..., title="Batcher for the training data") dropout: StrictFloat = Field(..., title="Dropout rate") patience: StrictInt = Field(..., title="How many steps to continue without improvement in evaluation score") max_epochs: StrictInt = Field(..., title="Maximum number of epochs to train for") max_steps: StrictInt = Field(..., title="Maximum number of update steps to train for") eval_frequency: StrictInt = Field(..., title="How often to evaluate during training (steps)") - eval_batch_size: StrictInt = Field(..., title="Evaluation batch size") seed: Optional[StrictInt] = Field(..., title="Random seed") accumulate_gradient: StrictInt = Field(..., title="Whether to divide the batch up into substeps") - use_pytorch_for_gpu_memory: StrictBool = Field(..., title="Allocate memory via PyTorch") score_weights: Dict[StrictStr, Union[StrictFloat, StrictInt]] = Field(..., title="Scores to report and their weights for selecting final model") init_tok2vec: Optional[StrictStr] = Field(..., title="Path to pretrained tok2vec weights") - discard_oversize: StrictBool = Field(..., title="Whether to skip examples longer than batch size") - batch_by: StrictStr = Field(..., title="Batch examples by type") - raw_text: Optional[StrictStr] = Field(..., title="Raw text") - tag_map: Optional[StrictStr] = Field(..., title="Path to JSON-formatted tag map") - morph_rules: Optional[StrictStr] = Field(..., title="Path to morphology rules") - batch_size: Union[Sequence[int], int] = Field(..., title="The batch size or batch size schedule") + raw_text: Optional[StrictStr] = Field(default=None, title="Raw text") optimizer: Optimizer = Field(..., title="The optimizer to use") # fmt: on @@ -211,6 +208,7 @@ class ConfigSchemaTraining(BaseModel): extra = "forbid" arbitrary_types_allowed = True +#eval_batch_size: StrictInt = Field(..., title="Evaluation batch size") class ConfigSchemaNlp(BaseModel): # fmt: off diff --git a/spacy/tests/parser/test_ner.py b/spacy/tests/parser/test_ner.py index 013ae6b7e..dbeb0a9cb 100644 --- a/spacy/tests/parser/test_ner.py +++ b/spacy/tests/parser/test_ner.py @@ -210,7 +210,7 @@ def test_train_empty(): nlp.begin_training() for itn in range(2): losses = {} - batches = util.minibatch(train_examples) + batches = util.minibatch(train_examples, size=8) for batch in batches: nlp.update(batch, losses=losses) diff --git a/spacy/tests/regression/test_issue4001-4500.py b/spacy/tests/regression/test_issue4001-4500.py index 636cddcb7..27464a39a 100644 --- a/spacy/tests/regression/test_issue4001-4500.py +++ b/spacy/tests/regression/test_issue4001-4500.py @@ -438,9 +438,8 @@ def test_issue4402(): data = DocBin(docs=docs, attrs=attrs).to_bytes() with output_file.open("wb") as file_: file_.write(data) - corpus = Corpus(train_loc=str(output_file), dev_loc=str(output_file)) - - train_data = list(corpus.train_dataset(nlp)) + reader = Corpus(output_file) + train_data = list(reader(nlp)) assert len(train_data) == 2 split_train_data = [] diff --git a/spacy/tests/serialize/test_serialize_config.py b/spacy/tests/serialize/test_serialize_config.py index ce35add42..05c2a1fba 100644 --- a/spacy/tests/serialize/test_serialize_config.py +++ b/spacy/tests/serialize/test_serialize_config.py @@ -11,8 +11,23 @@ from ..util import make_tempdir nlp_config_string = """ +[paths] +train = "" +dev = "" + [training] -batch_size = 666 + +[training.train_corpus] +@readers = "spacy.Corpus.v1" +path = ${paths:train} + +[training.dev_corpus] +@readers = "spacy.Corpus.v1" +path = ${paths:dev} + +[training.batcher] +@batchers = "batch_by_words.v1" +size = 666 [nlp] lang = "en" @@ -93,7 +108,7 @@ def test_create_nlp_from_config(): with pytest.raises(ConfigValidationError): nlp, _ = load_model_from_config(config, auto_fill=False) nlp, resolved = load_model_from_config(config, auto_fill=True) - assert nlp.config["training"]["batch_size"] == 666 + assert nlp.config["training"]["batcher"]["size"] == 666 assert len(nlp.config["training"]) > 1 assert nlp.pipe_names == ["tok2vec", "tagger"] assert len(nlp.config["components"]) == 2 diff --git a/spacy/tests/test_gold.py b/spacy/tests/test_gold.py index 4c1ee3b82..349c64836 100644 --- a/spacy/tests/test_gold.py +++ b/spacy/tests/test_gold.py @@ -483,14 +483,14 @@ def test_roundtrip_docs_to_docbin(doc): reloaded_nlp = English() json_file = tmpdir / "roundtrip.json" srsly.write_json(json_file, [docs_to_json(doc)]) - goldcorpus = Corpus(str(json_file), str(json_file)) output_file = tmpdir / "roundtrip.spacy" data = DocBin(docs=[doc]).to_bytes() with output_file.open("wb") as file_: file_.write(data) - goldcorpus = Corpus(train_loc=str(output_file), dev_loc=str(output_file)) - reloaded_example = next(goldcorpus.dev_dataset(nlp=reloaded_nlp)) - assert len(doc) == goldcorpus.count_train(reloaded_nlp) + reader = Corpus(output_file) + reloaded_examples = list(reader(reloaded_nlp)) + assert len(doc) == sum(len(eg) for eg in reloaded_examples) + reloaded_example = reloaded_examples[0] assert text == reloaded_example.reference.text assert idx == [t.idx for t in reloaded_example.reference] assert tags == [t.tag_ for t in reloaded_example.reference] @@ -515,10 +515,9 @@ def test_make_orth_variants(doc): data = DocBin(docs=[doc]).to_bytes() with output_file.open("wb") as file_: file_.write(data) - goldcorpus = Corpus(train_loc=str(output_file), dev_loc=str(output_file)) - # due to randomness, test only that this runs with no errors for now - train_example = next(goldcorpus.train_dataset(nlp)) + reader = Corpus(output_file) + train_example = next(reader(nlp)) make_orth_variants_example(nlp, train_example, orth_variant_level=0.2) diff --git a/spacy/tests/test_util.py b/spacy/tests/test_util.py index 3a6c0fd95..3d8cebc01 100644 --- a/spacy/tests/test_util.py +++ b/spacy/tests/test_util.py @@ -3,8 +3,9 @@ import pytest from .util import get_random_doc from spacy import util -from spacy.util import minibatch_by_words, dot_to_object +from spacy.util import dot_to_object from thinc.api import Config, Optimizer +from spacy.gold.batchers import minibatch_by_words from ..lang.en import English from ..lang.nl import Dutch diff --git a/spacy/util.py b/spacy/util.py index 305a9a535..d9e67440f 100644 --- a/spacy/util.py +++ b/spacy/util.py @@ -67,6 +67,8 @@ class registry(thinc.registry): lookups = catalogue.create("spacy", "lookups", entry_points=True) displacy_colors = catalogue.create("spacy", "displacy_colors", entry_points=True) assets = catalogue.create("spacy", "assets", entry_points=True) + batchers = catalogue.create("spacy", "batchers", entry_points=True) + readers = catalogue.create("spacy", "readers", entry_points=True) # These are factories registered via third-party packages and the # spacy_factories entry point. This registry only exists so we can easily # load them via the entry points. The "true" factories are added via the @@ -747,144 +749,6 @@ def normalize_slice( return start, stop -def minibatch( - items: Iterable[Any], size: Union[Iterator[int], int] = 8 -) -> Iterator[Any]: - """Iterate over batches of items. `size` may be an iterator, - so that batch-size can vary on each step. - """ - if isinstance(size, int): - size_ = itertools.repeat(size) - else: - size_ = size - items = iter(items) - while True: - batch_size = next(size_) - batch = list(itertools.islice(items, int(batch_size))) - if len(batch) == 0: - break - yield list(batch) - - -def minibatch_by_padded_size( - docs: Iterator["Doc"], - size: Union[Iterator[int], int], - buffer: int = 256, - discard_oversize: bool = False, -) -> Iterator[Iterator["Doc"]]: - if isinstance(size, int): - size_ = itertools.repeat(size) - else: - size_ = size - for outer_batch in minibatch(docs, buffer): - outer_batch = list(outer_batch) - target_size = next(size_) - for indices in _batch_by_length(outer_batch, target_size): - subbatch = [outer_batch[i] for i in indices] - padded_size = max(len(seq) for seq in subbatch) * len(subbatch) - if discard_oversize and padded_size >= target_size: - pass - else: - yield subbatch - - -def _batch_by_length(seqs: Sequence[Any], max_words: int) -> List[List[Any]]: - """Given a list of sequences, return a batched list of indices into the - list, where the batches are grouped by length, in descending order. - - Batches may be at most max_words in size, defined as max sequence length * size. - """ - # Use negative index so we can get sort by position ascending. - lengths_indices = [(len(seq), i) for i, seq in enumerate(seqs)] - lengths_indices.sort() - batches = [] - batch = [] - for length, i in lengths_indices: - if not batch: - batch.append(i) - elif length * (len(batch) + 1) <= max_words: - batch.append(i) - else: - batches.append(batch) - batch = [i] - if batch: - batches.append(batch) - # Check lengths match - assert sum(len(b) for b in batches) == len(seqs) - batches = [list(sorted(batch)) for batch in batches] - batches.reverse() - return batches - - -def minibatch_by_words(docs, size, tolerance=0.2, discard_oversize=False): - """Create minibatches of roughly a given number of words. If any examples - are longer than the specified batch length, they will appear in a batch by - themselves, or be discarded if discard_oversize=True. - The argument 'docs' can be a list of strings, Doc's or Example's. """ - from .gold import Example - - if isinstance(size, int): - size_ = itertools.repeat(size) - elif isinstance(size, List): - size_ = iter(size) - else: - size_ = size - target_size = next(size_) - tol_size = target_size * tolerance - batch = [] - overflow = [] - batch_size = 0 - overflow_size = 0 - for doc in docs: - if isinstance(doc, Example): - n_words = len(doc.reference) - elif isinstance(doc, str): - n_words = len(doc.split()) - else: - n_words = len(doc) - # if the current example exceeds the maximum batch size, it is returned separately - # but only if discard_oversize=False. - if n_words > target_size + tol_size: - if not discard_oversize: - yield [doc] - # add the example to the current batch if there's no overflow yet and it still fits - elif overflow_size == 0 and (batch_size + n_words) <= target_size: - batch.append(doc) - batch_size += n_words - # add the example to the overflow buffer if it fits in the tolerance margin - elif (batch_size + overflow_size + n_words) <= (target_size + tol_size): - overflow.append(doc) - overflow_size += n_words - # yield the previous batch and start a new one. The new one gets the overflow examples. - else: - if batch: - yield batch - target_size = next(size_) - tol_size = target_size * tolerance - batch = overflow - batch_size = overflow_size - overflow = [] - overflow_size = 0 - # this example still fits - if (batch_size + n_words) <= target_size: - batch.append(doc) - batch_size += n_words - # this example fits in overflow - elif (batch_size + n_words) <= (target_size + tol_size): - overflow.append(doc) - overflow_size += n_words - # this example does not fit with the previous overflow: start another new batch - else: - if batch: - yield batch - target_size = next(size_) - tol_size = target_size * tolerance - batch = [doc] - batch_size = n_words - batch.extend(overflow) - if batch: - yield batch - def filter_spans(spans: Iterable["Span"]) -> List["Span"]: """Filter a sequence of spans and remove duplicates or overlaps. Useful for @@ -1217,3 +1081,23 @@ def create_default_optimizer() -> Optimizer: L2_is_weight_decay=L2_is_weight_decay, ) return optimizer + + +def minibatch(items, size): + """Iterate over batches of items. `size` may be an iterator, + so that batch-size can vary on each step. + """ + if isinstance(size, int): + size_ = itertools.repeat(size) + else: + size_ = size + items = iter(items) + while True: + batch_size = next(size_) + batch = list(itertools.islice(items, int(batch_size))) + if len(batch) == 0: + break + yield list(batch) + + +