mirror of https://github.com/explosion/spaCy.git
Add textcat docstring
This commit is contained in:
parent
8a13f510d6
commit
ebf9a7acbf
|
@ -69,8 +69,19 @@ subword_features = true
|
||||||
default_score_weights={"cats_score": 1.0},
|
default_score_weights={"cats_score": 1.0},
|
||||||
)
|
)
|
||||||
def make_textcat(
|
def make_textcat(
|
||||||
nlp: Language, name: str, model: Model, labels: Iterable[str]
|
nlp: Language, name: str, model: Model[List[Doc], List[Floats2d]], labels: Iterable[str]
|
||||||
) -> "TextCategorizer":
|
) -> "TextCategorizer":
|
||||||
|
"""Create a TextCategorizer compoment. The text categorizer predicts categories
|
||||||
|
over a whole document. It can learn one or more labels, and the labels can
|
||||||
|
be mutually exclusive (i.e. one true label per doc) or non-mutually exclusive
|
||||||
|
(i.e. zero or more labels may be true per doc). The multi-label setting is
|
||||||
|
controlled by the model instance that's provided.
|
||||||
|
|
||||||
|
model (Model[List[Doc], List[Floats2d]]): A model instance that predicts
|
||||||
|
scores for each category.
|
||||||
|
labels (list): A list of categories to learn. If empty, the model infers the
|
||||||
|
categories from the data.
|
||||||
|
"""
|
||||||
return TextCategorizer(nlp.vocab, model, name, labels=labels)
|
return TextCategorizer(nlp.vocab, model, name, labels=labels)
|
||||||
|
|
||||||
|
|
||||||
|
|
Loading…
Reference in New Issue