mirror of https://github.com/explosion/spaCy.git
regression test for 7029
This commit is contained in:
parent
a52d466bfc
commit
ebeedfc70b
|
@ -0,0 +1,218 @@
|
|||
[paths]
|
||||
train = null
|
||||
dev = null
|
||||
vectors = null
|
||||
init_tok2vec = null
|
||||
raw_text = null
|
||||
|
||||
[system]
|
||||
gpu_allocator = null
|
||||
seed = 0
|
||||
|
||||
[nlp]
|
||||
lang = "en"
|
||||
pipeline = ["tok2vec","tagger","parser","ner"]
|
||||
batch_size = 1000
|
||||
disabled = []
|
||||
before_creation = null
|
||||
after_creation = null
|
||||
after_pipeline_creation = null
|
||||
tokenizer = {"@tokenizers":"spacy.Tokenizer.v1"}
|
||||
|
||||
[components]
|
||||
|
||||
[components.ner]
|
||||
factory = "ner"
|
||||
moves = null
|
||||
update_with_oracle_cut_size = 100
|
||||
|
||||
[components.ner.model]
|
||||
@architectures = "spacy.TransitionBasedParser.v2"
|
||||
state_type = "ner"
|
||||
extra_state_tokens = false
|
||||
hidden_width = 64
|
||||
maxout_pieces = 2
|
||||
use_upper = true
|
||||
nO = null
|
||||
|
||||
[components.ner.model.tok2vec]
|
||||
@architectures = "spacy.Tok2VecListener.v1"
|
||||
width = ${components.tok2vec.model.encode.width}
|
||||
upstream = "*"
|
||||
|
||||
[components.parser]
|
||||
factory = "parser"
|
||||
learn_tokens = false
|
||||
min_action_freq = 30
|
||||
moves = null
|
||||
update_with_oracle_cut_size = 100
|
||||
|
||||
[components.parser.model]
|
||||
@architectures = "spacy.TransitionBasedParser.v2"
|
||||
state_type = "parser"
|
||||
extra_state_tokens = false
|
||||
hidden_width = 128
|
||||
maxout_pieces = 3
|
||||
use_upper = true
|
||||
nO = null
|
||||
|
||||
[components.parser.model.tok2vec]
|
||||
@architectures = "spacy.Tok2VecListener.v1"
|
||||
width = ${components.tok2vec.model.encode.width}
|
||||
upstream = "*"
|
||||
|
||||
[components.tagger]
|
||||
factory = "tagger"
|
||||
|
||||
[components.tagger.model]
|
||||
@architectures = "spacy.Tagger.v1"
|
||||
nO = null
|
||||
|
||||
[components.tagger.model.tok2vec]
|
||||
@architectures = "spacy.Tok2VecListener.v1"
|
||||
width = ${components.tok2vec.model.encode.width}
|
||||
upstream = "*"
|
||||
|
||||
[components.tok2vec]
|
||||
factory = "tok2vec"
|
||||
|
||||
[components.tok2vec.model]
|
||||
@architectures = "spacy.Tok2Vec.v2"
|
||||
|
||||
[components.tok2vec.model.embed]
|
||||
@architectures = "spacy.MultiHashEmbed.v1"
|
||||
width = ${components.tok2vec.model.encode.width}
|
||||
attrs = ["NORM","PREFIX","SUFFIX","SHAPE"]
|
||||
rows = [5000,2500,2500,2500]
|
||||
include_static_vectors = false
|
||||
|
||||
[components.tok2vec.model.encode]
|
||||
@architectures = "spacy.MaxoutWindowEncoder.v2"
|
||||
width = 96
|
||||
depth = 4
|
||||
window_size = 1
|
||||
maxout_pieces = 3
|
||||
|
||||
[corpora]
|
||||
|
||||
[corpora.dev]
|
||||
@readers = "spacy.Corpus.v1"
|
||||
path = ${paths.dev}
|
||||
max_length = 0
|
||||
gold_preproc = false
|
||||
limit = 0
|
||||
augmenter = null
|
||||
|
||||
[corpora.pretrain]
|
||||
@readers = "spacy.JsonlCorpus.v1"
|
||||
path = ${paths.raw_text}
|
||||
min_length = 5
|
||||
max_length = 500
|
||||
limit = 0
|
||||
|
||||
[corpora.train]
|
||||
@readers = "spacy.Corpus.v1"
|
||||
path = ${paths.train}
|
||||
max_length = 2000
|
||||
gold_preproc = false
|
||||
limit = 0
|
||||
augmenter = null
|
||||
|
||||
[training]
|
||||
dev_corpus = "corpora.dev"
|
||||
train_corpus = "corpora.train"
|
||||
seed = ${system.seed}
|
||||
gpu_allocator = ${system.gpu_allocator}
|
||||
dropout = 0.1
|
||||
accumulate_gradient = 1
|
||||
patience = 1600
|
||||
max_epochs = 0
|
||||
max_steps = 20000
|
||||
eval_frequency = 200
|
||||
frozen_components = []
|
||||
before_to_disk = null
|
||||
|
||||
[training.batcher]
|
||||
@batchers = "spacy.batch_by_words.v1"
|
||||
discard_oversize = false
|
||||
tolerance = 0.2
|
||||
get_length = null
|
||||
|
||||
[training.batcher.size]
|
||||
@schedules = "compounding.v1"
|
||||
start = 100
|
||||
stop = 1000
|
||||
compound = 1.001
|
||||
t = 0.0
|
||||
|
||||
[training.logger]
|
||||
@loggers = "spacy.ConsoleLogger.v1"
|
||||
progress_bar = false
|
||||
|
||||
[training.optimizer]
|
||||
@optimizers = "Adam.v1"
|
||||
beta1 = 0.9
|
||||
beta2 = 0.999
|
||||
L2_is_weight_decay = true
|
||||
L2 = 0.01
|
||||
grad_clip = 1.0
|
||||
use_averages = false
|
||||
eps = 0.00000001
|
||||
learn_rate = 0.001
|
||||
|
||||
[training.score_weights]
|
||||
dep_las_per_type = null
|
||||
sents_p = null
|
||||
sents_r = null
|
||||
ents_per_type = null
|
||||
tag_acc = 0.33
|
||||
dep_uas = 0.17
|
||||
dep_las = 0.17
|
||||
sents_f = 0.0
|
||||
ents_f = 0.33
|
||||
ents_p = 0.0
|
||||
ents_r = 0.0
|
||||
|
||||
[pretraining]
|
||||
max_epochs = 1000
|
||||
dropout = 0.2
|
||||
n_save_every = null
|
||||
component = "tok2vec"
|
||||
layer = ""
|
||||
corpus = "corpora.pretrain"
|
||||
|
||||
[pretraining.batcher]
|
||||
@batchers = "spacy.batch_by_words.v1"
|
||||
size = 3000
|
||||
discard_oversize = false
|
||||
tolerance = 0.2
|
||||
get_length = null
|
||||
|
||||
[pretraining.objective]
|
||||
@architectures = "spacy.PretrainCharacters.v1"
|
||||
maxout_pieces = 3
|
||||
hidden_size = 300
|
||||
n_characters = 4
|
||||
|
||||
[pretraining.optimizer]
|
||||
@optimizers = "Adam.v1"
|
||||
beta1 = 0.9
|
||||
beta2 = 0.999
|
||||
L2_is_weight_decay = true
|
||||
L2 = 0.01
|
||||
grad_clip = 1.0
|
||||
use_averages = true
|
||||
eps = 0.00000001
|
||||
learn_rate = 0.001
|
||||
|
||||
[initialize]
|
||||
vectors = null
|
||||
init_tok2vec = ${paths.init_tok2vec}
|
||||
vocab_data = null
|
||||
lookups = null
|
||||
before_init = null
|
||||
after_init = null
|
||||
|
||||
[initialize.components]
|
||||
|
||||
[initialize.tokenizer]
|
|
@ -0,0 +1,217 @@
|
|||
[paths]
|
||||
train = null
|
||||
dev = null
|
||||
vectors = null
|
||||
init_tok2vec = null
|
||||
raw_text = null
|
||||
|
||||
[system]
|
||||
gpu_allocator = "pytorch"
|
||||
seed = 0
|
||||
|
||||
[nlp]
|
||||
lang = "en"
|
||||
pipeline = ["transformer","tagger","parser","ner"]
|
||||
batch_size = 128
|
||||
disabled = []
|
||||
before_creation = null
|
||||
after_creation = null
|
||||
after_pipeline_creation = null
|
||||
tokenizer = {"@tokenizers":"spacy.Tokenizer.v1"}
|
||||
|
||||
[components]
|
||||
|
||||
[components.ner]
|
||||
factory = "ner"
|
||||
moves = null
|
||||
update_with_oracle_cut_size = 100
|
||||
|
||||
[components.ner.model]
|
||||
@architectures = "spacy.TransitionBasedParser.v2"
|
||||
state_type = "ner"
|
||||
extra_state_tokens = false
|
||||
hidden_width = 64
|
||||
maxout_pieces = 2
|
||||
use_upper = false
|
||||
nO = null
|
||||
|
||||
[components.ner.model.tok2vec]
|
||||
@architectures = "spacy-transformers.TransformerListener.v1"
|
||||
grad_factor = 1.0
|
||||
pooling = {"@layers":"reduce_mean.v1"}
|
||||
upstream = "*"
|
||||
|
||||
[components.parser]
|
||||
factory = "parser"
|
||||
learn_tokens = false
|
||||
min_action_freq = 30
|
||||
moves = null
|
||||
update_with_oracle_cut_size = 100
|
||||
|
||||
[components.parser.model]
|
||||
@architectures = "spacy.TransitionBasedParser.v2"
|
||||
state_type = "parser"
|
||||
extra_state_tokens = false
|
||||
hidden_width = 128
|
||||
maxout_pieces = 3
|
||||
use_upper = false
|
||||
nO = null
|
||||
|
||||
[components.parser.model.tok2vec]
|
||||
@architectures = "spacy-transformers.TransformerListener.v1"
|
||||
grad_factor = 1.0
|
||||
pooling = {"@layers":"reduce_mean.v1"}
|
||||
upstream = "*"
|
||||
|
||||
[components.tagger]
|
||||
factory = "tagger"
|
||||
|
||||
[components.tagger.model]
|
||||
@architectures = "spacy.Tagger.v1"
|
||||
nO = null
|
||||
|
||||
[components.tagger.model.tok2vec]
|
||||
@architectures = "spacy-transformers.TransformerListener.v1"
|
||||
grad_factor = 1.0
|
||||
pooling = {"@layers":"reduce_mean.v1"}
|
||||
upstream = "*"
|
||||
|
||||
[components.transformer]
|
||||
factory = "transformer"
|
||||
max_batch_items = 4096
|
||||
set_extra_annotations = {"@annotation_setters":"spacy-transformers.null_annotation_setter.v1"}
|
||||
|
||||
[components.transformer.model]
|
||||
@architectures = "spacy-transformers.TransformerModel.v1"
|
||||
name = "roberta-base"
|
||||
|
||||
[components.transformer.model.get_spans]
|
||||
@span_getters = "spacy-transformers.strided_spans.v1"
|
||||
window = 128
|
||||
stride = 96
|
||||
|
||||
[components.transformer.model.tokenizer_config]
|
||||
use_fast = true
|
||||
|
||||
[corpora]
|
||||
|
||||
[corpora.dev]
|
||||
@readers = "spacy.Corpus.v1"
|
||||
path = ${paths.dev}
|
||||
max_length = 0
|
||||
gold_preproc = false
|
||||
limit = 0
|
||||
augmenter = null
|
||||
|
||||
[corpora.pretrain]
|
||||
@readers = "spacy.JsonlCorpus.v1"
|
||||
path = ${paths.raw_text}
|
||||
min_length = 5
|
||||
max_length = 500
|
||||
limit = 0
|
||||
|
||||
[corpora.train]
|
||||
@readers = "spacy.Corpus.v1"
|
||||
path = ${paths.train}
|
||||
max_length = 500
|
||||
gold_preproc = false
|
||||
limit = 0
|
||||
augmenter = null
|
||||
|
||||
[training]
|
||||
accumulate_gradient = 3
|
||||
dev_corpus = "corpora.dev"
|
||||
train_corpus = "corpora.train"
|
||||
seed = ${system.seed}
|
||||
gpu_allocator = ${system.gpu_allocator}
|
||||
dropout = 0.1
|
||||
patience = 1600
|
||||
max_epochs = 0
|
||||
max_steps = 20000
|
||||
eval_frequency = 200
|
||||
frozen_components = []
|
||||
before_to_disk = null
|
||||
|
||||
[training.batcher]
|
||||
@batchers = "spacy.batch_by_padded.v1"
|
||||
discard_oversize = true
|
||||
size = 2000
|
||||
buffer = 256
|
||||
get_length = null
|
||||
|
||||
[training.logger]
|
||||
@loggers = "spacy.ConsoleLogger.v1"
|
||||
progress_bar = false
|
||||
|
||||
[training.optimizer]
|
||||
@optimizers = "Adam.v1"
|
||||
beta1 = 0.9
|
||||
beta2 = 0.999
|
||||
L2_is_weight_decay = true
|
||||
L2 = 0.01
|
||||
grad_clip = 1.0
|
||||
use_averages = false
|
||||
eps = 0.00000001
|
||||
|
||||
[training.optimizer.learn_rate]
|
||||
@schedules = "warmup_linear.v1"
|
||||
warmup_steps = 250
|
||||
total_steps = 20000
|
||||
initial_rate = 0.00005
|
||||
|
||||
[training.score_weights]
|
||||
dep_las_per_type = null
|
||||
sents_p = null
|
||||
sents_r = null
|
||||
ents_per_type = null
|
||||
tag_acc = 0.33
|
||||
dep_uas = 0.17
|
||||
dep_las = 0.17
|
||||
sents_f = 0.0
|
||||
ents_f = 0.33
|
||||
ents_p = 0.0
|
||||
ents_r = 0.0
|
||||
|
||||
[pretraining]
|
||||
max_epochs = 1000
|
||||
dropout = 0.2
|
||||
n_save_every = null
|
||||
component = "tok2vec"
|
||||
layer = ""
|
||||
corpus = "corpora.pretrain"
|
||||
|
||||
[pretraining.batcher]
|
||||
@batchers = "spacy.batch_by_words.v1"
|
||||
size = 3000
|
||||
discard_oversize = false
|
||||
tolerance = 0.2
|
||||
get_length = null
|
||||
|
||||
[pretraining.objective]
|
||||
@architectures = "spacy.PretrainCharacters.v1"
|
||||
maxout_pieces = 3
|
||||
hidden_size = 300
|
||||
n_characters = 4
|
||||
|
||||
[pretraining.optimizer]
|
||||
@optimizers = "Adam.v1"
|
||||
beta1 = 0.9
|
||||
beta2 = 0.999
|
||||
L2_is_weight_decay = true
|
||||
L2 = 0.01
|
||||
grad_clip = 1.0
|
||||
use_averages = true
|
||||
eps = 0.00000001
|
||||
learn_rate = 0.001
|
||||
|
||||
[initialize]
|
||||
vectors = null
|
||||
init_tok2vec = ${paths.init_tok2vec}
|
||||
vocab_data = null
|
||||
lookups = null
|
||||
before_init = null
|
||||
after_init = null
|
||||
|
||||
[initialize.components]
|
||||
|
||||
[initialize.tokenizer]
|
|
@ -0,0 +1,71 @@
|
|||
from spacy.lang.en import English
|
||||
from spacy.training import Example
|
||||
from spacy.util import load_config_from_str
|
||||
|
||||
|
||||
CONFIG = """
|
||||
[nlp]
|
||||
lang = "en"
|
||||
pipeline = ["tok2vec", "tagger"]
|
||||
|
||||
[components]
|
||||
|
||||
[components.tok2vec]
|
||||
factory = "tok2vec"
|
||||
|
||||
[components.tok2vec.model]
|
||||
@architectures = "spacy.Tok2Vec.v1"
|
||||
|
||||
[components.tok2vec.model.embed]
|
||||
@architectures = "spacy.MultiHashEmbed.v1"
|
||||
width = ${components.tok2vec.model.encode:width}
|
||||
attrs = ["NORM","PREFIX","SUFFIX","SHAPE"]
|
||||
rows = [5000,2500,2500,2500]
|
||||
include_static_vectors = false
|
||||
|
||||
[components.tok2vec.model.encode]
|
||||
@architectures = "spacy.MaxoutWindowEncoder.v1"
|
||||
width = 96
|
||||
depth = 4
|
||||
window_size = 1
|
||||
maxout_pieces = 3
|
||||
|
||||
[components.ner]
|
||||
factory = "ner"
|
||||
|
||||
[components.tagger]
|
||||
factory = "tagger"
|
||||
|
||||
[components.tagger.model]
|
||||
@architectures = "spacy.Tagger.v1"
|
||||
nO = null
|
||||
|
||||
[components.tagger.model.tok2vec]
|
||||
@architectures = "spacy.Tok2VecListener.v1"
|
||||
width = ${components.tok2vec.model.encode:width}
|
||||
upstream = "*"
|
||||
"""
|
||||
|
||||
|
||||
TRAIN_DATA = [
|
||||
("I like green eggs", {"tags": ["N", "V", "J", "N"]}),
|
||||
("Eat blue ham", {"tags": ["V", "J", "N"]}),
|
||||
]
|
||||
|
||||
|
||||
def test_issue7029():
|
||||
"""Test that an empty document doesn't mess up an entire batch.
|
||||
"""
|
||||
nlp = English.from_config(load_config_from_str(CONFIG))
|
||||
train_examples = []
|
||||
for t in TRAIN_DATA:
|
||||
train_examples.append(Example.from_dict(nlp.make_doc(t[0]), t[1]))
|
||||
optimizer = nlp.initialize(get_examples=lambda: train_examples)
|
||||
for i in range(50):
|
||||
losses = {}
|
||||
nlp.update(train_examples, sgd=optimizer, losses=losses)
|
||||
texts = ["first", "second", "thrid", "fourth", "and", "then", "some", ""]
|
||||
nlp.select_pipes(enable=["tok2vec", "tagger"])
|
||||
docs1 = list(nlp.pipe(texts, batch_size=1))
|
||||
docs2 = list(nlp.pipe(texts, batch_size=4))
|
||||
assert [doc[0].tag_ for doc in docs1[:-1]] == [doc[0].tag_ for doc in docs2[:-1]]
|
Loading…
Reference in New Issue