mirror of https://github.com/explosion/spaCy.git
Small fixes to parser
This commit is contained in:
parent
188c0f6949
commit
e6d71e1778
|
@ -33,7 +33,7 @@ from preshed.maps cimport MapStruct
|
|||
from preshed.maps cimport map_get
|
||||
|
||||
from thinc.api import layerize, chain
|
||||
from thinc.neural import Affine, Model, Maxout
|
||||
from thinc.neural import BatchNorm, Model, Affine, ELU, ReLu, Maxout
|
||||
from thinc.neural.ops import NumpyOps
|
||||
|
||||
from .._ml import zero_init, PrecomputableAffine, PrecomputableMaxouts
|
||||
|
@ -62,7 +62,8 @@ def set_debug(val):
|
|||
DEBUG = val
|
||||
|
||||
|
||||
def get_greedy_model_for_batch(batch_size, tokvecs, lower_model, cuda_stream=None):
|
||||
def get_greedy_model_for_batch(batch_size, tokvecs, lower_model, cuda_stream=None,
|
||||
drop=0.):
|
||||
'''Allow a model to be "primed" by pre-computing input features in bulk.
|
||||
|
||||
This is used for the parser, where we want to take a batch of documents,
|
||||
|
@ -79,16 +80,17 @@ def get_greedy_model_for_batch(batch_size, tokvecs, lower_model, cuda_stream=Non
|
|||
we can do all our hard maths up front, packed into large multiplications,
|
||||
and do the hard-to-program parsing on the CPU.
|
||||
'''
|
||||
gpu_cached, bp_features = lower_model.begin_update(tokvecs, drop=0.)
|
||||
gpu_cached, bp_features = lower_model.begin_update(tokvecs, drop=drop)
|
||||
cdef np.ndarray cached
|
||||
if not isinstance(gpu_cached, numpy.ndarray):
|
||||
cached = gpu_cached.get(stream=cuda_stream)
|
||||
else:
|
||||
cached = gpu_cached
|
||||
nF = gpu_cached.shape[1]
|
||||
nO = gpu_cached.shape[2]
|
||||
nP = gpu_cached.shape[3]
|
||||
ops = lower_model.ops
|
||||
features = numpy.zeros((batch_size, cached.shape[2], nP), dtype='f')
|
||||
features = numpy.zeros((batch_size, nO, nP), dtype='f')
|
||||
synchronized = False
|
||||
|
||||
def forward(token_ids, drop=0.):
|
||||
|
@ -108,7 +110,7 @@ def get_greedy_model_for_batch(batch_size, tokvecs, lower_model, cuda_stream=Non
|
|||
cdef int[:, ::1] ids = token_ids
|
||||
_sum_features(<float*>&feats[0,0,0],
|
||||
<float*>cached.data, &ids[0,0],
|
||||
token_ids.shape[0], nF, cached.shape[2]*nP)
|
||||
token_ids.shape[0], nF, nO*nP)
|
||||
|
||||
if nP >= 2:
|
||||
best, which = ops.maxout(features)
|
||||
|
@ -155,13 +157,16 @@ def get_batch_loss(TransitionSystem moves, states, golds, float[:, ::1] scores):
|
|||
cdef int i
|
||||
is_valid = <int*>mem.alloc(moves.n_moves, sizeof(int))
|
||||
costs = <float*>mem.alloc(moves.n_moves, sizeof(float))
|
||||
cdef np.ndarray d_scores = numpy.zeros((len(states), moves.n_moves), dtype='f')
|
||||
cdef np.ndarray d_scores = numpy.zeros((len(states), moves.n_moves), dtype='f',
|
||||
order='c')
|
||||
c_d_scores = <float*>d_scores.data
|
||||
for i, (state, gold) in enumerate(zip(states, golds)):
|
||||
memset(is_valid, 0, moves.n_moves * sizeof(int))
|
||||
memset(costs, 0, moves.n_moves * sizeof(float))
|
||||
moves.set_costs(is_valid, costs, state, gold)
|
||||
cpu_log_loss(c_d_scores, costs, is_valid, &scores[i, 0], d_scores.shape[1])
|
||||
#cpu_regression_loss(c_d_scores,
|
||||
# costs, is_valid, &scores[i, 0], d_scores.shape[1])
|
||||
c_d_scores += d_scores.shape[1]
|
||||
return d_scores
|
||||
|
||||
|
@ -231,7 +236,7 @@ def init_states(TransitionSystem moves, docs):
|
|||
def extract_token_ids(states, offsets=None, nF=1, nB=0, nS=2, nL=0, nR=0):
|
||||
cdef StateClass state
|
||||
cdef int n_tokens = states[0].nr_context_tokens(nF, nB, nS, nL, nR)
|
||||
ids = numpy.zeros((len(states), n_tokens), dtype='i')
|
||||
ids = numpy.zeros((len(states), n_tokens), dtype='i', order='c')
|
||||
if offsets is None:
|
||||
offsets = [0] * len(states)
|
||||
for i, (state, offset) in enumerate(zip(states, offsets)):
|
||||
|
@ -240,6 +245,24 @@ def extract_token_ids(states, offsets=None, nF=1, nB=0, nS=2, nL=0, nR=0):
|
|||
return ids
|
||||
|
||||
|
||||
_n_iter = 0
|
||||
@layerize
|
||||
def print_mean_variance(X, drop=0.):
|
||||
global _n_iter
|
||||
_n_iter += 1
|
||||
fwd_iter = _n_iter
|
||||
means = X.mean(axis=0)
|
||||
variance = X.var(axis=0)
|
||||
print(fwd_iter, "M", ', '.join(('%.2f' % m) for m in means))
|
||||
print(fwd_iter, "V", ', '.join(('%.2f' % m) for m in variance))
|
||||
def backward(dX, sgd=None):
|
||||
means = dX.mean(axis=0)
|
||||
variance = dX.var(axis=0)
|
||||
print(fwd_iter, "dM", ', '.join(('%.2f' % m) for m in means))
|
||||
print(fwd_iter, "dV", ', '.join(('%.2f' % m) for m in variance))
|
||||
return X, backward
|
||||
|
||||
|
||||
cdef class Parser:
|
||||
"""
|
||||
Base class of the DependencyParser and EntityRecognizer.
|
||||
|
@ -301,13 +324,14 @@ cdef class Parser:
|
|||
nr_context_tokens = StateClass.nr_context_tokens(nF, nB, nS, nL, nR)
|
||||
with Model.use_device('cpu'):
|
||||
upper = chain(
|
||||
Maxout(token_vector_width),
|
||||
zero_init(Affine(self.moves.n_moves, token_vector_width)))
|
||||
Maxout(hidden_width, hidden_width),
|
||||
#print_mean_variance,
|
||||
zero_init(Affine(self.moves.n_moves, hidden_width)))
|
||||
assert isinstance(upper.ops, NumpyOps)
|
||||
lower = PrecomputableMaxouts(token_vector_width, nF=nr_context_tokens, nI=token_vector_width,
|
||||
lower = PrecomputableMaxouts(hidden_width, nF=nr_context_tokens, nI=token_vector_width,
|
||||
pieces=cfg.get('maxout_pieces', 1))
|
||||
upper.begin_training(upper.ops.allocate((500, token_vector_width)))
|
||||
lower.begin_training(lower.ops.allocate((500, token_vector_width)))
|
||||
upper.begin_training(upper.ops.allocate((500, hidden_width)))
|
||||
return upper, lower
|
||||
|
||||
def __call__(self, Doc tokens):
|
||||
|
@ -390,13 +414,15 @@ cdef class Parser:
|
|||
def update(self, docs_tokvecs, golds, drop=0., sgd=None):
|
||||
cdef:
|
||||
int nC
|
||||
int[500] is_valid # Hack for now
|
||||
Doc doc
|
||||
StateClass state
|
||||
np.ndarray scores
|
||||
|
||||
docs, tokvecs = docs_tokvecs
|
||||
cuda_stream = Stream()
|
||||
lower_model = get_greedy_model_for_batch(len(docs),
|
||||
tokvecs, self.feature_maps, cuda_stream=cuda_stream,
|
||||
drop=drop)
|
||||
if isinstance(docs, Doc) and isinstance(golds, GoldParse):
|
||||
return self.update(([docs], tokvecs), [golds], drop=drop)
|
||||
for gold in golds:
|
||||
|
@ -407,31 +433,45 @@ cdef class Parser:
|
|||
todo = zip(states, offsets, golds)
|
||||
todo = filter(lambda sp: not sp[0].py_is_final(), todo)
|
||||
|
||||
lower_model = get_greedy_model_for_batch(len(todo),
|
||||
tokvecs, self.feature_maps, cuda_stream=cuda_stream)
|
||||
cdef Pool mem = Pool()
|
||||
is_valid = <int*>mem.alloc(len(states) * self.moves.n_moves, sizeof(int))
|
||||
costs = <float*>mem.alloc(len(states) * self.moves.n_moves, sizeof(float))
|
||||
|
||||
upper_model = self.model
|
||||
d_tokens = self.feature_maps.ops.allocate(tokvecs.shape)
|
||||
backprops = []
|
||||
n_tokens = tokvecs.shape[0]
|
||||
nF = self.feature_maps.nF
|
||||
while todo:
|
||||
loss = 0.
|
||||
total = 1e-4
|
||||
follow_gold = False
|
||||
while len(todo) >= 4:
|
||||
states, offsets, golds = zip(*todo)
|
||||
|
||||
token_ids = extract_token_ids(states, offsets=offsets)
|
||||
lower, bp_lower = lower_model(token_ids)
|
||||
scores, bp_scores = upper_model.begin_update(lower)
|
||||
lower, bp_lower = lower_model(token_ids, drop=drop)
|
||||
scores, bp_scores = upper_model.begin_update(lower, drop=drop)
|
||||
|
||||
d_scores = get_batch_loss(self.moves, states, golds, scores)
|
||||
loss += numpy.abs(d_scores).sum()
|
||||
total += d_scores.shape[0]
|
||||
d_lower = bp_scores(d_scores, sgd=sgd)
|
||||
|
||||
gpu_tok_ids = cupy.ndarray(token_ids.shape, dtype='i')
|
||||
gpu_d_lower = cupy.ndarray(d_lower.shape, dtype='f')
|
||||
if isinstance(tokvecs, cupy.ndarray):
|
||||
gpu_tok_ids = cupy.ndarray(token_ids.shape, dtype='i', order='C')
|
||||
gpu_d_lower = cupy.ndarray(d_lower.shape, dtype='f', order='C')
|
||||
gpu_tok_ids.set(token_ids, stream=cuda_stream)
|
||||
gpu_d_lower.set(d_lower, stream=cuda_stream)
|
||||
backprops.append((gpu_tok_ids, gpu_d_lower, bp_lower))
|
||||
else:
|
||||
backprops.append((token_ids, d_lower, bp_lower))
|
||||
|
||||
c_scores = <float*>scores.data
|
||||
for state in states:
|
||||
for state, gold in zip(states, golds):
|
||||
if follow_gold:
|
||||
self.moves.set_costs(is_valid, costs, state, gold)
|
||||
guess = arg_max_if_gold(c_scores, costs, is_valid, scores.shape[1])
|
||||
else:
|
||||
self.moves.set_valid(is_valid, state.c)
|
||||
guess = arg_max_if_valid(c_scores, is_valid, scores.shape[1])
|
||||
action = self.moves.c[guess]
|
||||
|
@ -451,7 +491,7 @@ cdef class Parser:
|
|||
else:
|
||||
self.model.ops.xp.add.at(d_tokens,
|
||||
token_ids, d_state_features * active_feats)
|
||||
return d_tokens
|
||||
return d_tokens, loss / total
|
||||
|
||||
def step_through(self, Doc doc, GoldParse gold=None):
|
||||
"""
|
||||
|
|
Loading…
Reference in New Issue