diff --git a/spacy/cli/debug_model.py b/spacy/cli/debug_model.py index a3071f17a..480c6b2c4 100644 --- a/spacy/cli/debug_model.py +++ b/spacy/cli/debug_model.py @@ -7,8 +7,6 @@ import typer from ._util import Arg, Opt, debug_cli, show_validation_error, parse_config_overrides from .. import util -from ..lang.en import English -from ..util import dot_to_object @debug_cli.command("model") @@ -130,8 +128,8 @@ def _sentences(): ] -def _get_docs(): - nlp = English() +def _get_docs(lang: str = "en"): + nlp = util.get_lang_class(lang)() return list(nlp.pipe(_sentences())) diff --git a/spacy/cli/evaluate.py b/spacy/cli/evaluate.py index 19ff78989..5b434ee32 100644 --- a/spacy/cli/evaluate.py +++ b/spacy/cli/evaluate.py @@ -1,5 +1,4 @@ from typing import Optional, List, Dict -from timeit import default_timer as timer from wasabi import Printer from pathlib import Path import re diff --git a/spacy/cli/project/assets.py b/spacy/cli/project/assets.py index e42935e2f..3be784e04 100644 --- a/spacy/cli/project/assets.py +++ b/spacy/cli/project/assets.py @@ -1,7 +1,6 @@ from typing import Optional from pathlib import Path from wasabi import msg -import tqdm import re import shutil import requests diff --git a/spacy/gold/__init__.py b/spacy/gold/__init__.py index 2713732b2..142c6b3a7 100644 --- a/spacy/gold/__init__.py +++ b/spacy/gold/__init__.py @@ -1,14 +1,8 @@ -from .corpus import Corpus -from .example import Example -from .align import Alignment - -from .iob_utils import iob_to_biluo, biluo_to_iob -from .iob_utils import biluo_tags_from_offsets, offsets_from_biluo_tags -from .iob_utils import spans_from_biluo_tags -from .iob_utils import tags_to_entities - -from .gold_io import docs_to_json -from .gold_io import read_json_file - - -from .batchers import minibatch_by_padded_size, minibatch_by_words +from .corpus import Corpus # noqa: F401 +from .example import Example # noqa: F401 +from .align import Alignment # noqa: F401 +from .iob_utils import iob_to_biluo, biluo_to_iob # noqa: F401 +from .iob_utils import biluo_tags_from_offsets, offsets_from_biluo_tags # noqa: F401 +from .iob_utils import spans_from_biluo_tags, tags_to_entities # noqa: F401 +from .gold_io import docs_to_json, read_json_file # noqa: F401 +from .batchers import minibatch_by_padded_size, minibatch_by_words # noqa: F401 diff --git a/spacy/gold/batchers.py b/spacy/gold/batchers.py index 99f6c7d8d..d1b8e6b55 100644 --- a/spacy/gold/batchers.py +++ b/spacy/gold/batchers.py @@ -3,7 +3,6 @@ from typing import Optional, Any from functools import partial import itertools -from .example import Example from ..util import registry, minibatch @@ -41,16 +40,13 @@ def configure_minibatch_by_words( ) -> BatcherT: optionals = {"get_length": get_length} if get_length is not None else {} return partial( - minibatch_by_words, - size=size, - discard_oversize=discard_oversize, - **optionals + minibatch_by_words, size=size, discard_oversize=discard_oversize, **optionals ) @registry.batchers("batch_by_sequence.v1") def configure_minibatch(size: Sizing, get_length=None) -> BatcherT: - optionals = ({"get_length": get_length} if get_length is not None else {}) + optionals = {"get_length": get_length} if get_length is not None else {} return partial(minibatch, size=size, **optionals) diff --git a/spacy/gold/converters/__init__.py b/spacy/gold/converters/__init__.py index 63d52ad9d..15f025a08 100644 --- a/spacy/gold/converters/__init__.py +++ b/spacy/gold/converters/__init__.py @@ -1,4 +1,4 @@ from .iob2docs import iob2docs # noqa: F401 from .conll_ner2docs import conll_ner2docs # noqa: F401 -from .json2docs import json2docs +from .json2docs import json2docs # noqa: F401 from .conllu2docs import conllu2docs # noqa: F401 diff --git a/spacy/gold/corpus.py b/spacy/gold/corpus.py index 411d684e6..758fe021e 100644 --- a/spacy/gold/corpus.py +++ b/spacy/gold/corpus.py @@ -1,6 +1,5 @@ -from typing import Union, List, Iterable, Iterator, TYPE_CHECKING, Callable, Tuple +from typing import Union, List, Iterable, Iterator, TYPE_CHECKING, Callable from pathlib import Path -import random from .. import util from .example import Example @@ -25,7 +24,7 @@ class Corpus: path (Path): The directory or filename to read from. gold_preproc (bool): Whether to set up the Example object with gold-standard - sentences and tokens for the predictions. Gold preprocessing helps + sentences and tokens for the predictions. Gold preprocessing helps the annotations align to the tokenization, and may result in sequences of more consistent length. However, it may reduce run-time accuracy due to train/test skew. Defaults to False. @@ -39,7 +38,12 @@ class Corpus: """ def __init__( - self, path, *, limit: int = 0, gold_preproc: bool = False, max_length: bool = False, + self, + path, + *, + limit: int = 0, + gold_preproc: bool = False, + max_length: bool = False, ) -> None: self.path = util.ensure_path(path) self.gold_preproc = gold_preproc diff --git a/spacy/ml/_biluo.py b/spacy/ml/_biluo.py index 5a8f28dfe..5a66a35bd 100644 --- a/spacy/ml/_biluo.py +++ b/spacy/ml/_biluo.py @@ -80,7 +80,7 @@ def _get_transition_table( B_start, B_end = (0, n_labels) I_start, I_end = (B_end, B_end + n_labels) L_start, L_end = (I_end, I_end + n_labels) - U_start, _ = (L_end, L_end + n_labels) + U_start, _ = (L_end, L_end + n_labels) # noqa: F841 # Using ranges allows us to set specific cells, which is necessary to express # that only actions of the same label are valid continuations. B_range = numpy.arange(B_start, B_end) diff --git a/spacy/pipeline/attributeruler.py b/spacy/pipeline/attributeruler.py index ac86f60e0..1f1e63959 100644 --- a/spacy/pipeline/attributeruler.py +++ b/spacy/pipeline/attributeruler.py @@ -17,9 +17,7 @@ MatcherPatternType = List[Dict[Union[int, str], Any]] AttributeRulerPatternType = Dict[str, Union[MatcherPatternType, Dict, int]] -@Language.factory( - "attribute_ruler", -) +@Language.factory("attribute_ruler") def make_attribute_ruler( nlp: Language, name: str, @@ -58,7 +56,7 @@ class AttributeRuler(Pipe): self.vocab = vocab self.matcher = Matcher(self.vocab) self.attrs = [] - self._attrs_unnormed = [] # store for reference + self._attrs_unnormed = [] # store for reference self.indices = [] if pattern_dicts: diff --git a/spacy/schemas.py b/spacy/schemas.py index eea2d3dc3..745d46333 100644 --- a/spacy/schemas.py +++ b/spacy/schemas.py @@ -1,17 +1,23 @@ from typing import Dict, List, Union, Optional, Sequence, Any, Callable, Type -from typing import Iterable, TypeVar +from typing import Iterable, TypeVar, TYPE_CHECKING from enum import Enum from pydantic import BaseModel, Field, ValidationError, validator from pydantic import StrictStr, StrictInt, StrictFloat, StrictBool from pydantic import root_validator from collections import defaultdict from thinc.api import Optimizer -from pathlib import Path from .attrs import NAMES +if TYPE_CHECKING: + # This lets us add type hints for mypy etc. without causing circular imports + from .language import Language # noqa: F401 + from .gold import Example # noqa: F401 + + ItemT = TypeVar("ItemT") Batcher = Callable[[Iterable[ItemT]], Iterable[List[ItemT]]] +Reader = Callable[["Language", str], Iterable["Example"]] def validate(schema: Type[BaseModel], obj: Dict[str, Any]) -> List[str]: @@ -183,7 +189,6 @@ class ModelMetaSchema(BaseModel): # check that against this schema in the test suite to make sure it's always # up to date. -Reader = Callable[["Language", str], Iterable["Example"]] class ConfigSchemaTraining(BaseModel): # fmt: off @@ -209,7 +214,6 @@ class ConfigSchemaTraining(BaseModel): extra = "forbid" arbitrary_types_allowed = True -#eval_batch_size: StrictInt = Field(..., title="Evaluation batch size") class ConfigSchemaNlp(BaseModel): # fmt: off diff --git a/spacy/tests/doc/test_span.py b/spacy/tests/doc/test_span.py index 686678a14..79e8f31c0 100644 --- a/spacy/tests/doc/test_span.py +++ b/spacy/tests/doc/test_span.py @@ -291,6 +291,6 @@ def test_span_boundaries(doc): for i in range(start, end): assert span[i - start] == doc[i] with pytest.raises(IndexError): - _ = span[-5] + span[-5] with pytest.raises(IndexError): - _ = span[5] + span[5] diff --git a/spacy/tests/lang/zh/test_serialize.py b/spacy/tests/lang/zh/test_serialize.py index 015f92785..1c6fdf419 100644 --- a/spacy/tests/lang/zh/test_serialize.py +++ b/spacy/tests/lang/zh/test_serialize.py @@ -29,9 +29,7 @@ def test_zh_tokenizer_serialize_jieba(zh_tokenizer_jieba): def test_zh_tokenizer_serialize_pkuseg_with_processors(zh_tokenizer_pkuseg): nlp = Chinese( meta={ - "tokenizer": { - "config": {"segmenter": "pkuseg", "pkuseg_model": "medicine",} - } + "tokenizer": {"config": {"segmenter": "pkuseg", "pkuseg_model": "medicine"}} } ) zh_tokenizer_serialize(nlp.tokenizer) diff --git a/spacy/tests/matcher/test_matcher_logic.py b/spacy/tests/matcher/test_matcher_logic.py index 8f4c13471..5f4c2991a 100644 --- a/spacy/tests/matcher/test_matcher_logic.py +++ b/spacy/tests/matcher/test_matcher_logic.py @@ -21,7 +21,7 @@ re_pattern5 = "B*A*B" longest1 = "A A A A A" longest2 = "A A A A A" longest3 = "A A" -longest4 = "B A A A A A B" # "FIRST" would be "B B" +longest4 = "B A A A A A B" # "FIRST" would be "B B" longest5 = "B B A A A A A B" diff --git a/spacy/tests/parser/test_nonproj.py b/spacy/tests/parser/test_nonproj.py index 5bdebd0ca..41da7cf49 100644 --- a/spacy/tests/parser/test_nonproj.py +++ b/spacy/tests/parser/test_nonproj.py @@ -1,6 +1,6 @@ import pytest -from spacy.pipeline._parser_internals.nonproj import ancestors, contains_cycle, is_nonproj_arc -from spacy.pipeline._parser_internals.nonproj import is_nonproj_tree +from spacy.pipeline._parser_internals.nonproj import ancestors, contains_cycle +from spacy.pipeline._parser_internals.nonproj import is_nonproj_tree, is_nonproj_arc from spacy.pipeline._parser_internals import nonproj from ..util import get_doc diff --git a/spacy/tests/pipeline/test_attributeruler.py b/spacy/tests/pipeline/test_attributeruler.py index a4cf34717..bcde7bf63 100644 --- a/spacy/tests/pipeline/test_attributeruler.py +++ b/spacy/tests/pipeline/test_attributeruler.py @@ -75,19 +75,18 @@ def test_attributeruler_init(nlp, pattern_dicts): def test_attributeruler_init_patterns(nlp, pattern_dicts): # initialize with patterns - a = nlp.add_pipe("attribute_ruler", config={"pattern_dicts": pattern_dicts}) - + nlp.add_pipe("attribute_ruler", config={"pattern_dicts": pattern_dicts}) doc = nlp("This is a test.") assert doc[2].lemma_ == "the" assert doc[2].morph_ == "Case=Nom|Number=Plur" assert doc[3].lemma_ == "cat" assert doc[3].morph_ == "Case=Nom|Number=Sing" - nlp.remove_pipe("attribute_ruler") - # initialize with patterns from asset - a = nlp.add_pipe("attribute_ruler", config={"pattern_dicts": {"@assets": "attribute_ruler_patterns"}}) - + nlp.add_pipe( + "attribute_ruler", + config={"pattern_dicts": {"@assets": "attribute_ruler_patterns"}}, + ) doc = nlp("This is a test.") assert doc[2].lemma_ == "the" assert doc[2].morph_ == "Case=Nom|Number=Plur" diff --git a/spacy/tests/pipeline/test_entity_linker.py b/spacy/tests/pipeline/test_entity_linker.py index 236d0e0d5..bb93cf118 100644 --- a/spacy/tests/pipeline/test_entity_linker.py +++ b/spacy/tests/pipeline/test_entity_linker.py @@ -117,12 +117,15 @@ def test_kb_default(nlp): assert len(entity_linker.kb) == 0 assert entity_linker.kb.get_size_entities() == 0 assert entity_linker.kb.get_size_aliases() == 0 - assert entity_linker.kb.entity_vector_length == 64 # default value from pipeline.entity_linker + # default value from pipeline.entity_linker + assert entity_linker.kb.entity_vector_length == 64 def test_kb_custom_length(nlp): """Test that the default (empty) KB can be configured with a custom entity length""" - entity_linker = nlp.add_pipe("entity_linker", config={"kb": {"entity_vector_length": 35}}) + entity_linker = nlp.add_pipe( + "entity_linker", config={"kb": {"entity_vector_length": 35}} + ) assert len(entity_linker.kb) == 0 assert entity_linker.kb.get_size_entities() == 0 assert entity_linker.kb.get_size_aliases() == 0 diff --git a/spacy/tests/pipeline/test_textcat.py b/spacy/tests/pipeline/test_textcat.py index c18d00a00..41384897a 100644 --- a/spacy/tests/pipeline/test_textcat.py +++ b/spacy/tests/pipeline/test_textcat.py @@ -117,9 +117,7 @@ def test_overfitting_IO(): assert cats2["POSITIVE"] + cats2["NEGATIVE"] == pytest.approx(1.0, 0.1) # Test scoring - scores = nlp.evaluate( - train_examples, scorer_cfg={"positive_label": "POSITIVE"} - ) + scores = nlp.evaluate(train_examples, scorer_cfg={"positive_label": "POSITIVE"}) assert scores["cats_f"] == 1.0 assert scores["cats_score"] == 1.0 assert "cats_score_desc" in scores diff --git a/spacy/tests/serialize/test_serialize_config.py b/spacy/tests/serialize/test_serialize_config.py index 05c2a1fba..9b4d841b2 100644 --- a/spacy/tests/serialize/test_serialize_config.py +++ b/spacy/tests/serialize/test_serialize_config.py @@ -88,14 +88,9 @@ def my_parser(): width=321, rows=5432, also_embed_subwords=True, - also_use_static_vectors=False + also_use_static_vectors=False, ), - MaxoutWindowEncoder( - width=321, - window_size=3, - maxout_pieces=4, - depth=2 - ) + MaxoutWindowEncoder(width=321, window_size=3, maxout_pieces=4, depth=2), ) parser = build_tb_parser_model( tok2vec=tok2vec, nr_feature_tokens=7, hidden_width=65, maxout_pieces=5 diff --git a/spacy/tests/serialize/test_serialize_doc.py b/spacy/tests/serialize/test_serialize_doc.py index a547b51bc..4a976fc02 100644 --- a/spacy/tests/serialize/test_serialize_doc.py +++ b/spacy/tests/serialize/test_serialize_doc.py @@ -1,5 +1,4 @@ import spacy -import pytest from spacy.lang.en import English from spacy.tokens import Doc, DocBin diff --git a/spacy/tests/test_gold.py b/spacy/tests/test_gold.py index 82965acbc..16974a4c2 100644 --- a/spacy/tests/test_gold.py +++ b/spacy/tests/test_gold.py @@ -711,16 +711,18 @@ def test_alignment_different_texts(): with pytest.raises(ValueError): Alignment.from_strings(other_tokens, spacy_tokens) + def test_retokenized_docs(doc): a = doc.to_array(["TAG"]) doc1 = Doc(doc.vocab, words=[t.text for t in doc]).from_array(["TAG"], a) doc2 = Doc(doc.vocab, words=[t.text for t in doc]).from_array(["TAG"], a) example = Example(doc1, doc2) - - assert example.get_aligned("ORTH", as_string=True) == ['Sarah', "'s", 'sister', 'flew', 'to', 'Silicon', 'Valley', 'via', 'London', '.'] - + # fmt: off + expected1 = ["Sarah", "'s", "sister", "flew", "to", "Silicon", "Valley", "via", "London", "."] + expected2 = [None, "sister", "flew", "to", None, "via", "London", "."] + # fmt: on + assert example.get_aligned("ORTH", as_string=True) == expected1 with doc1.retokenize() as retokenizer: retokenizer.merge(doc1[0:2]) retokenizer.merge(doc1[5:7]) - - assert example.get_aligned("ORTH", as_string=True) == [None, 'sister', 'flew', 'to', None, 'via', 'London', '.'] \ No newline at end of file + assert example.get_aligned("ORTH", as_string=True) == expected2 diff --git a/spacy/tests/test_models.py b/spacy/tests/test_models.py index 4c38ea6c6..8f1bb1c3d 100644 --- a/spacy/tests/test_models.py +++ b/spacy/tests/test_models.py @@ -24,6 +24,7 @@ def get_textcat_kwargs(): "nO": 7, } + def get_textcat_cnn_kwargs(): return { "tok2vec": test_tok2vec(), @@ -31,6 +32,7 @@ def get_textcat_cnn_kwargs(): "nO": 13, } + def get_all_params(model): params = [] for node in model.walk(): @@ -59,17 +61,11 @@ def get_tok2vec_kwargs(): # This actually creates models, so seems best to put it in a function. return { "embed": MultiHashEmbed( - width=32, - rows=500, - also_embed_subwords=True, - also_use_static_vectors=False + width=32, rows=500, also_embed_subwords=True, also_use_static_vectors=False ), "encode": MaxoutWindowEncoder( - width=32, - depth=2, - maxout_pieces=2, - window_size=1, - ) + width=32, depth=2, maxout_pieces=2, window_size=1, + ), } diff --git a/spacy/tests/test_tok2vec.py b/spacy/tests/test_tok2vec.py index 76b5e64df..b30705088 100644 --- a/spacy/tests/test_tok2vec.py +++ b/spacy/tests/test_tok2vec.py @@ -19,14 +19,9 @@ def test_empty_doc(): width=width, rows=embed_size, also_use_static_vectors=False, - also_embed_subwords=True + also_embed_subwords=True, ), - MaxoutWindowEncoder( - width=width, - depth=4, - window_size=1, - maxout_pieces=3 - ) + MaxoutWindowEncoder(width=width, depth=4, window_size=1, maxout_pieces=3), ) tok2vec.initialize() vectors, backprop = tok2vec.begin_update([doc]) @@ -44,14 +39,9 @@ def test_tok2vec_batch_sizes(batch_size, width, embed_size): width=width, rows=embed_size, also_use_static_vectors=False, - also_embed_subwords=True + also_embed_subwords=True, ), - MaxoutWindowEncoder( - width=width, - depth=4, - window_size=1, - maxout_pieces=3, - ) + MaxoutWindowEncoder(width=width, depth=4, window_size=1, maxout_pieces=3,), ) tok2vec.initialize() vectors, backprop = tok2vec.begin_update(batch) diff --git a/spacy/tests/test_util.py b/spacy/tests/test_util.py index 3d8cebc01..47111a902 100644 --- a/spacy/tests/test_util.py +++ b/spacy/tests/test_util.py @@ -85,27 +85,24 @@ def test_util_dot_section(): """ nlp_config = Config().from_str(cfg_string) en_nlp, en_config = util.load_model_from_config(nlp_config, auto_fill=True) - default_config = Config().from_disk(DEFAULT_CONFIG_PATH) default_config["nlp"]["lang"] = "nl" nl_nlp, nl_config = util.load_model_from_config(default_config, auto_fill=True) - # Test that creation went OK assert isinstance(en_nlp, English) assert isinstance(nl_nlp, Dutch) assert nl_nlp.pipe_names == [] assert en_nlp.pipe_names == ["textcat"] - assert en_nlp.get_pipe("textcat").model.attrs["multi_label"] == False # not exclusive_classes - + # not exclusive_classes + assert en_nlp.get_pipe("textcat").model.attrs["multi_label"] is False # Test that default values got overwritten assert not en_config["nlp"]["load_vocab_data"] assert nl_config["nlp"]["load_vocab_data"] # default value True - # Test proper functioning of 'dot_to_object' with pytest.raises(KeyError): - obj = dot_to_object(en_config, "nlp.pipeline.tagger") + dot_to_object(en_config, "nlp.pipeline.tagger") with pytest.raises(KeyError): - obj = dot_to_object(en_config, "nlp.unknownattribute") + dot_to_object(en_config, "nlp.unknownattribute") assert not dot_to_object(en_config, "nlp.load_vocab_data") assert dot_to_object(nl_config, "nlp.load_vocab_data") assert isinstance(dot_to_object(nl_config, "training.optimizer"), Optimizer) diff --git a/spacy/util.py b/spacy/util.py index 4e84b6a6b..96257896f 100644 --- a/spacy/util.py +++ b/spacy/util.py @@ -1,5 +1,5 @@ from typing import List, Union, Dict, Any, Optional, Iterable, Callable, Tuple -from typing import Iterator, Type, Pattern, Sequence, TYPE_CHECKING +from typing import Iterator, Type, Pattern, TYPE_CHECKING from types import ModuleType import os import importlib @@ -764,7 +764,6 @@ def normalize_slice( return start, stop - def filter_spans(spans: Iterable["Span"]) -> List["Span"]: """Filter a sequence of spans and remove duplicates or overlaps. Useful for creating named entities (where one token can only be part of one entity) or @@ -1113,6 +1112,3 @@ def minibatch(items, size): if len(batch) == 0: break yield list(batch) - - -