Changed conllu2json to be able to extract NER tags (#2594)

* extract ner tags from conllu file if available

* fixed a bug in regex
This commit is contained in:
Kaisa (Katarzyna) Korsak 2018-07-25 22:21:31 +02:00 committed by Matthew Honnibal
parent 07d0cc9de7
commit e531a827db
1 changed files with 65 additions and 5 deletions

View File

@ -4,9 +4,12 @@ from __future__ import unicode_literals
from .._messages import Messages
from ...compat import json_dumps, path2str
from ...util import prints
from ...gold import iob_to_biluo
import re
def conllu2json(input_path, output_path, n_sents=10, use_morphology=False):
"""
Convert conllu files into JSON format for use with train cli.
use_morphology parameter enables appending morphology to tags, which is
@ -14,15 +17,27 @@ def conllu2json(input_path, output_path, n_sents=10, use_morphology=False):
"""
# by @dvsrepo, via #11 explosion/spacy-dev-resources
"""
Extract NER tags if available and convert them so that they follow
BILUO and the Wikipedia scheme
"""
# by @katarkor
docs = []
sentences = []
conll_tuples = read_conllx(input_path, use_morphology=use_morphology)
checked_for_ner = False
has_ner_tags = False
for i, (raw_text, tokens) in enumerate(conll_tuples):
sentence, brackets = tokens[0]
sentences.append(generate_sentence(sentence))
if not checked_for_ner:
has_ner_tags = is_ner(sentence[5][0])
checked_for_ner = True
sentences.append(generate_sentence(sentence, has_ner_tags))
# Real-sized documents could be extracted using the comments on the
# conluu document
if(len(sentences) % n_sents == 0):
doc = create_doc(sentences, i)
docs.append(doc)
@ -37,6 +52,21 @@ def conllu2json(input_path, output_path, n_sents=10, use_morphology=False):
title=Messages.M032.format(name=path2str(output_file)))
def is_ner(tag):
"""
Check the 10th column of the first token to determine if the file contains
NER tags
"""
tag_match = re.match('([A-Z_]+)-([A-Z_]+)', tag)
if tag_match:
return True
elif tag == "O":
return True
else:
return False
def read_conllx(input_path, use_morphology=False, n=0):
text = input_path.open('r', encoding='utf-8').read()
i = 0
@ -49,7 +79,7 @@ def read_conllx(input_path, use_morphology=False, n=0):
for line in lines:
parts = line.split('\t')
id_, word, lemma, pos, tag, morph, head, dep, _1, _2 = parts
id_, word, lemma, pos, tag, morph, head, dep, _1, iob = parts
if '-' in id_ or '.' in id_:
continue
try:
@ -58,7 +88,7 @@ def read_conllx(input_path, use_morphology=False, n=0):
dep = 'ROOT' if dep == 'root' else dep
tag = pos if tag == '_' else tag
tag = tag+'__'+morph if use_morphology else tag
tokens.append((id_, word, tag, head, dep, 'O'))
tokens.append((id_, word, tag, head, dep, iob))
except:
print(line)
raise
@ -68,17 +98,47 @@ def read_conllx(input_path, use_morphology=False, n=0):
if n >= 1 and i >= n:
break
def simplify_tags(iob):
"""
Simplify tags obtained from the dataset in order to follow Wikipedia
scheme (PER, LOC, ORG, MISC). 'PER', 'LOC' and 'ORG' keep their tags, while
'GPE_LOC' is simplified to 'LOC', 'GPE_ORG' to 'ORG' and all remaining tags to
'MISC'.
"""
def generate_sentence(sent):
(id_, word, tag, head, dep, _) = sent
new_iob = []
for tag in iob:
tag_match = re.match('([A-Z_]+)-([A-Z_]+)', tag)
if tag_match:
prefix = tag_match.group(1)
suffix = tag_match.group(2)
if suffix == 'GPE_LOC':
suffix = 'LOC'
elif suffix == 'GPE_ORG':
suffix = 'ORG'
elif suffix != 'PER' and suffix != 'LOC' and suffix != 'ORG':
suffix = 'MISC'
tag = prefix + '-' + suffix
new_iob.append(tag)
return new_iob
def generate_sentence(sent, has_ner_tags):
(id_, word, tag, head, dep, iob) = sent
sentence = {}
tokens = []
if has_ner_tags:
iob = simplify_tags(iob)
biluo = iob_to_biluo(iob)
for i, id in enumerate(id_):
token = {}
token["id"] = id
token["orth"] = word[i]
token["tag"] = tag[i]
token["head"] = head[i] - id
token["dep"] = dep[i]
if has_ner_tags:
token["ner"] = biluo[i]
tokens.append(token)
sentence["tokens"] = tokens
return sentence