diff --git a/spacy/cli/debug_data.py b/spacy/cli/debug_data.py index a63795148..f94319d1d 100644 --- a/spacy/cli/debug_data.py +++ b/spacy/cli/debug_data.py @@ -19,6 +19,7 @@ from ..morphology import Morphology from ..language import Language from ..util import registry, resolve_dot_names from ..compat import Literal +from ..vectors import Mode as VectorsMode from .. import util @@ -170,26 +171,34 @@ def debug_data( show=verbose, ) if len(nlp.vocab.vectors): - msg.info( - f"{len(nlp.vocab.vectors)} vectors ({nlp.vocab.vectors.n_keys} " - f"unique keys, {nlp.vocab.vectors_length} dimensions)" - ) - n_missing_vectors = sum(gold_train_data["words_missing_vectors"].values()) - msg.warn( - "{} words in training data without vectors ({:.0f}%)".format( - n_missing_vectors, - 100 * (n_missing_vectors / gold_train_data["n_words"]), - ), - ) - msg.text( - "10 most common words without vectors: {}".format( - _format_labels( - gold_train_data["words_missing_vectors"].most_common(10), - counts=True, - ) - ), - show=verbose, - ) + if nlp.vocab.vectors.mode == VectorsMode.floret: + msg.info( + f"floret vectors with {len(nlp.vocab.vectors)} vectors, " + f"{nlp.vocab.vectors_length} dimensions, " + f"{nlp.vocab.vectors.minn}-{nlp.vocab.vectors.maxn} char " + f"n-gram subwords" + ) + else: + msg.info( + f"{len(nlp.vocab.vectors)} vectors ({nlp.vocab.vectors.n_keys} " + f"unique keys, {nlp.vocab.vectors_length} dimensions)" + ) + n_missing_vectors = sum(gold_train_data["words_missing_vectors"].values()) + msg.warn( + "{} words in training data without vectors ({:.0f}%)".format( + n_missing_vectors, + 100 * (n_missing_vectors / gold_train_data["n_words"]), + ), + ) + msg.text( + "10 most common words without vectors: {}".format( + _format_labels( + gold_train_data["words_missing_vectors"].most_common(10), + counts=True, + ) + ), + show=verbose, + ) else: msg.info("No word vectors present in the package")