diff --git a/spacy/cli/train.py b/spacy/cli/train.py index ebac339ae..63c6242de 100644 --- a/spacy/cli/train.py +++ b/spacy/cli/train.py @@ -35,7 +35,12 @@ from .. import about pipeline=("Comma-separated names of pipeline components", "option", "p", str), vectors=("Model to load vectors from", "option", "v", str), n_iter=("Number of iterations", "option", "n", int), - early_stopping_iter=("Maximum number of training epochs without dev accuracy improvement", "option", "e", int), + n_early_stopping=( + "Maximum number of training epochs without dev accuracy improvement", + "option", + "ne", + int, + ), n_examples=("Number of examples", "option", "ns", int), use_gpu=("Use GPU", "option", "g", int), version=("Model version", "option", "V", str), @@ -75,7 +80,7 @@ def train( pipeline="tagger,parser,ner", vectors=None, n_iter=30, - early_stopping_iter=None, + n_early_stopping=None, n_examples=0, use_gpu=-1, version="0.0.0", @@ -335,15 +340,15 @@ def train( gpu_wps=gpu_wps, ) msg.row(progress, **row_settings) - if early_stopping_iter is not None: # Early stopping + if n_early_stopping is not None: current_score = _score_for_model(meta) if current_score < best_score: iter_since_best += 1 else: iter_since_best = 0 best_score = current_score - if iter_since_best >= early_stopping_iter: + if iter_since_best >= n_early_stopping: msg.text( "Early stopping, best iteration " "is: {}".format(i - iter_since_best)