mirror of https://github.com/explosion/spaCy.git
* Update get_freqs.py script
This commit is contained in:
parent
710e8fb168
commit
e08a4b46a2
|
@ -1,6 +1,6 @@
|
||||||
#!/usr/bin/env python
|
#!/usr/bin/env python
|
||||||
|
|
||||||
from __future__ import unicode_literals
|
from __future__ import unicode_literals, print_function
|
||||||
|
|
||||||
import plac
|
import plac
|
||||||
import joblib
|
import joblib
|
||||||
|
@ -14,7 +14,7 @@ from joblib import Parallel, delayed
|
||||||
|
|
||||||
import spacy.en
|
import spacy.en
|
||||||
from spacy.strings import StringStore
|
from spacy.strings import StringStore
|
||||||
from spacy.en.attrs import ORTH
|
from spacy.attrs import ORTH
|
||||||
|
|
||||||
|
|
||||||
def iter_comments(loc):
|
def iter_comments(loc):
|
||||||
|
@ -40,20 +40,19 @@ def null_props(string):
|
||||||
|
|
||||||
|
|
||||||
def count_freqs(input_loc, output_loc):
|
def count_freqs(input_loc, output_loc):
|
||||||
print output_loc
|
print(output_loc)
|
||||||
nlp = spacy.en.English(Parser=None, Tagger=None, Entity=None, load_vectors=False)
|
tokenizer = Tokenizer.from_dir(Vocab(), English.default_data_dir())
|
||||||
nlp.vocab.lexeme_props_getter = null_props
|
|
||||||
|
|
||||||
counts = PreshCounter()
|
counts = PreshCounter()
|
||||||
tokenizer = nlp.tokenizer
|
|
||||||
for json_comment in iter_comments(input_loc):
|
for json_comment in iter_comments(input_loc):
|
||||||
doc = tokenizer(json_comment['body'])
|
doc = tokenizer(json_comment['body'])
|
||||||
doc.count_by(ORTH, counts=counts)
|
doc.count_by(ORTH, counts=counts)
|
||||||
|
|
||||||
with codecs.open(output_loc, 'w', 'utf8') as file_:
|
with codecs.open(output_loc, 'w', 'utf8') as file_:
|
||||||
for orth, freq in counts:
|
for orth, freq in counts:
|
||||||
string = nlp.vocab.strings[orth]
|
string = tokenizer.vocab.strings[orth]
|
||||||
file_.write('%d\t%s\n' % (freq, repr(string)))
|
if not string.isspace():
|
||||||
|
file_.write('%d\t%s\n' % (freq, string))
|
||||||
|
|
||||||
|
|
||||||
def parallelize(func, iterator, n_jobs):
|
def parallelize(func, iterator, n_jobs):
|
||||||
|
@ -64,12 +63,12 @@ def merge_counts(locs, out_loc):
|
||||||
string_map = StringStore()
|
string_map = StringStore()
|
||||||
counts = PreshCounter()
|
counts = PreshCounter()
|
||||||
for loc in locs:
|
for loc in locs:
|
||||||
with codecs.open(loc, 'r', 'utf8') as file_:
|
with io.open(loc, 'r', encoding='utf8') as file_:
|
||||||
for line in file_:
|
for line in file_:
|
||||||
freq, word = line.strip().split('\t', 1)
|
freq, word = line.strip().split('\t', 1)
|
||||||
orth = string_map[word]
|
orth = string_map[word]
|
||||||
counts.inc(orth, int(freq))
|
counts.inc(orth, int(freq))
|
||||||
with codecs.open(out_loc, 'w', 'utf8') as file_:
|
with io.open(out_loc, 'w', encoding='utf8') as file_:
|
||||||
for orth, count in counts:
|
for orth, count in counts:
|
||||||
string = string_map[orth]
|
string = string_map[orth]
|
||||||
file_.write('%d\t%s\n' % (count, string))
|
file_.write('%d\t%s\n' % (count, string))
|
||||||
|
@ -98,7 +97,7 @@ def main(input_loc, freqs_dir, output_loc, n_jobs=2, skip_existing=False):
|
||||||
if tasks:
|
if tasks:
|
||||||
parallelize(count_freqs, tasks, n_jobs)
|
parallelize(count_freqs, tasks, n_jobs)
|
||||||
|
|
||||||
print "Merge"
|
print("Merge")
|
||||||
merge_counts(outputs, output_loc)
|
merge_counts(outputs, output_loc)
|
||||||
|
|
||||||
|
|
||||||
|
|
Loading…
Reference in New Issue